This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382885 #22 Apr 08 2025 08:47:26 %S A382885 1,3,18,121,900,7110,58598,498153,4336533,38463732,346368351, %T A382885 3158325168,29102914959,270582713670,2535191045652,23913087584045, %U A382885 226892934532149,2164080724942155,20737076963936828,199542537271568802,1927347504059464995,18679645863925666721 %N A382885 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x) * A(x) )^3. %F A382885 G.f. A(x) satisfies A(x) = ( 1 + x * (1+x) * A(x)^(4/3) )^3. %F A382885 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). %F A382885 G.f.: B(x)^3, where B(x) is the g.f. of A365178. %o A382885 (PARI) a(n, r=3, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); %Y A382885 Cf. A052709, A371576. %Y A382885 Cf. A365178, A371483. %K A382885 nonn %O A382885 0,2 %A A382885 _Seiichi Manyama_, Apr 08 2025