cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382886 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^2 * A(x) )^3.

This page as a plain text file.
%I A382886 #24 Apr 08 2025 08:47:21
%S A382886 1,3,21,154,1248,10710,95751,882297,8320812,79927938,779303829,
%T A382886 7692585186,76726084742,772066751871,7828529324175,79908510600542,
%U A382886 820435635949686,8467306916189517,87791572491261912,914032693961190414,9552050623400554164,100162810727306404897
%N A382886 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^2 * A(x) )^3.
%F A382886 G.f. A(x) satisfies A(x) = ( 1 + x * (1+x)^2 * A(x)^(4/3) )^3.
%F A382886 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
%F A382886 G.f.: B(x)^3, where B(x) is the g.f. of A378786.
%o A382886 (PARI) a(n, r=3, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
%Y A382886 Cf. A073155, A382893.
%Y A382886 Cf. A378786, A382406.
%K A382886 nonn
%O A382886 0,2
%A A382886 _Seiichi Manyama_, Apr 08 2025