cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382889 The largest square dividing the n-th cubefree number.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 25, 1, 4, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 49, 25, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 25, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 49, 9, 100
Offset: 1

Views

Author

Amiram Eldar, Apr 07 2025

Keywords

Comments

Also, the powerful part of the n-th cubefree number.
All the terms are squares of squarefree numbers (A062503).

Crossrefs

Cf. A002117, A004709, A008833, A057521, A062503, A371188 (positions of 1's).
Similar sequences: A382888, A382890, A382891.

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 0, 2]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 3, print1(prod(i = 1, #f~, f[i, 1]^if(f[i, 2] == 1, 0, 2)), ", ")));}

Formula

a(n) = A008833(A004709(n)).
a(n) = A057521(A004709(n)).
a(n) = A382890(n)^2.
a(n) = A004709(n)/A382891(n).
a(n) = (A004709(n)/A382888(n))^2.
a(A371188(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3)^(3/2) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^2 - 1/p^(5/2)) = 1.48513488319516447978... .