cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382892 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^3.

This page as a plain text file.
%I A382892 #10 Apr 08 2025 08:47:17
%S A382892 1,3,24,190,1659,15309,146986,1453536,14704917,151479031,1583533308,
%T A382892 16756882194,179149227231,1932144798513,20996553430206,
%U A382892 229678298803028,2527034248221849,27947027713469307,310494250880357488,3463870813896354726,38787008808135775299
%N A382892 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^3.
%F A382892 G.f. A(x) satisfies A(x) = ( 1 + x * (1+x)^3 * A(x)^(4/3) )^3.
%F A382892 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
%F A382892 G.f.: B(x)^3, where B(x) is the g.f. of A366272.
%o A382892 (PARI) a(n, r=3, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
%Y A382892 Cf. A360076, A382894.
%Y A382892 Cf. A366272, A382614.
%K A382892 nonn
%O A382892 0,2
%A A382892 _Seiichi Manyama_, Apr 08 2025