This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382898 #9 Apr 15 2025 04:00:01 %S A382898 13,151,227,2083,887,79,2963,1579,6287,1321,6719,54919,26699,8647, %T A382898 4229,3919,102161,42433,1667,192193,11633,186343,47339,3259,65963, %U A382898 14293,29717,61297,28493,231367,43793,145021,566441,475903,92381,80473,139967,882061,72893,709279,6053,114487,1179389,204331,203351,139831,396239,205327,501173,951589 %N A382898 Beginning with 13, least prime such that concatenation of first n terms and its digit reversal both are primes. %H A382898 J.W.L. (Jan) Eerland, <a href="/A382898/b382898.txt">Table of n, a(n) for n = 1..150</a> %p A382898 rev:= proc(n) local L,i; %p A382898 L:= convert(n,base,10); %p A382898 add(L[-i]*10^(i-1),i=1..nops(L)) %p A382898 end proc: %p A382898 tcat:= proc(a,b) %p A382898 a*10^(1+ilog10(b))+b %p A382898 end proc: %p A382898 A:= 13: x:= 13: %p A382898 for i from 1 to 50 do %p A382898 p:= 2: %p A382898 do %p A382898 p:= nextprime(p); %p A382898 y:= tcat(x,p); %p A382898 if isprime(y) and isprime(rev(y)) then %p A382898 A:= A,p; %p A382898 x:= y; %p A382898 break %p A382898 fi; %p A382898 od %p A382898 od: %p A382898 A; # after _Robert Israel_ in A113584 %t A382898 w={13};Do[k=1;q=Monitor[Parallelize[While[True,If[PrimeQ[FromDigits[Join@@IntegerDigits/@Reverse[IntegerDigits[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]]]]]&&PrimeQ[FromDigits[Join@@IntegerDigits/@Append[w,Prime[k]]]],Break[]];k++];Prime[k]],{i,k}];w=Append[w,q],{i,2,50}];w %o A382898 (Python) %o A382898 from itertools import count, islice %o A382898 from gmpy2 import digits, is_prime, mpz, next_prime %o A382898 def agen(): # generator of terms %o A382898 s, r, an = "", "", 13 %o A382898 while True: %o A382898 yield int(an) %o A382898 d = digits(an) %o A382898 s, r, p, sp = s+d, d[::-1]+r, 3, "3" %o A382898 while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): %o A382898 p = next_prime(p) %o A382898 sp = digits(p) %o A382898 an = p %o A382898 print(list(islice(agen(), 40))) # after _Michael S. Branicky_ in A113584 %Y A382898 Cf. A113584 (same for 3), A379761 (same for 7), A380227 (same for 11). %Y A382898 Cf. A111382, A111383, A379354, A379355. %K A382898 base,nonn %O A382898 1,1 %A A382898 _J.W.L. (Jan) Eerland_, Apr 08 2025