A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1
Keywords
Examples
The terms, prime indices, and corresponding multisets begin: 1: {} {} 2: {1} {1} 3: {2} {1,1} 5: {3} {1,1,1} 6: {1,2} {1,1,2} 7: {4} {1,1,1,1} 10: {1,3} {1,1,1,2} 11: {5} {1,1,1,1,1} 13: {6} {1,1,1,1,1,1} 14: {1,4} {1,1,1,1,2} 15: {2,3} {1,1,1,2,2} 17: {7} {1,1,1,1,1,1,1} 19: {8} {1,1,1,1,1,1,1,1} 21: {2,4} {1,1,1,1,2,2} 22: {1,5} {1,1,1,1,1,2} 23: {9} {1,1,1,1,1,1,1,1,1} 25: {3,3} {1,1,1,2,2,2} 26: {1,6} {1,1,1,1,1,1,2}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]]; lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={}; Select[Range[100],lasQ@*nrmptn]
Comments