cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382915 Number of integer partitions of n having no permutation with all equal run-lengths.

This page as a plain text file.
%I A382915 #11 Apr 26 2025 11:28:02
%S A382915 0,0,0,0,0,1,2,4,4,9,11,18,21,34,41,55,69,98,120,160,189,249,309,396,
%T A382915 472,605,734,913,1099,1371,1632,2021,2406,2937,3514,4251,5039,6101,
%U A382915 7221,8646,10205,12209,14347,17086,20041,23713,27807,32803,38262,45043,52477,61471,71496
%N A382915 Number of integer partitions of n having no permutation with all equal run-lengths.
%e A382915 The partition y = (2,2,1,1,1) has permutations and run-lengths:
%e A382915   (2,2,1,1,1) (2,3)
%e A382915   (2,1,2,1,1) (1,1,1,2)
%e A382915   (2,1,1,2,1) (1,2,1,1)
%e A382915   (2,1,1,1,2) (1,3,1)
%e A382915   (1,2,2,1,1) (1,2,2)
%e A382915   (1,2,1,2,1) (1,1,1,1,1)
%e A382915   (1,2,1,1,2) (1,1,2,1)
%e A382915   (1,1,2,2,1) (2,2,1)
%e A382915   (1,1,2,1,2) (2,1,1,1)
%e A382915   (1,1,1,2,2) (3,2)
%e A382915 Since (1,2,1,2,1) has all equal run-lengths (1,1,1,1,1), y is not counted under a(7).
%e A382915 The a(5) = 1 through a(10) = 11 partitions:
%e A382915   (2111)  (3111)   (2221)    (5111)     (3222)      (3331)
%e A382915           (21111)  (4111)    (41111)    (6111)      (4222)
%e A382915                    (31111)   (311111)   (22221)     (7111)
%e A382915                    (211111)  (2111111)  (51111)     (61111)
%e A382915                                         (321111)    (421111)
%e A382915                                         (411111)    (511111)
%e A382915                                         (2211111)   (3211111)
%e A382915                                         (3111111)   (4111111)
%e A382915                                         (21111111)  (22111111)
%e A382915                                                     (31111111)
%e A382915                                                     (211111111)
%t A382915 Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Length/@Split[#]&]=={}&]],{n,0,15}]
%Y A382915 The complement for distinct run-lengths is A239455, ranked by A351294.
%Y A382915 For distinct instead of equal run-lengths we have A351293, ranked by A351295.
%Y A382915 These partitions are ranked by A382879, by signature A382914.
%Y A382915 The complement is counted by A383013.
%Y A382915 A000041 counts integer partitions, strict A000009.
%Y A382915 A056239 adds up prime indices, row sums of A112798.
%Y A382915 A304442 counts partitions with equal run-sums, ranks A353833.
%Y A382915 A329738 counts compositions with equal run-lengths, ranks A353744.
%Y A382915 A382857 counts permutations of prime indices with equal run-lengths.
%Y A382915 Cf. A003242, A047966, A238279, A329739, A351201, A351290, A351596, A382773.
%K A382915 nonn
%O A382915 0,7
%A A382915 _Gus Wiseman_, Apr 12 2025
%E A382915 More terms from _Bert Dobbelaere_, Apr 26 2025