This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382915 #11 Apr 26 2025 11:28:02 %S A382915 0,0,0,0,0,1,2,4,4,9,11,18,21,34,41,55,69,98,120,160,189,249,309,396, %T A382915 472,605,734,913,1099,1371,1632,2021,2406,2937,3514,4251,5039,6101, %U A382915 7221,8646,10205,12209,14347,17086,20041,23713,27807,32803,38262,45043,52477,61471,71496 %N A382915 Number of integer partitions of n having no permutation with all equal run-lengths. %e A382915 The partition y = (2,2,1,1,1) has permutations and run-lengths: %e A382915 (2,2,1,1,1) (2,3) %e A382915 (2,1,2,1,1) (1,1,1,2) %e A382915 (2,1,1,2,1) (1,2,1,1) %e A382915 (2,1,1,1,2) (1,3,1) %e A382915 (1,2,2,1,1) (1,2,2) %e A382915 (1,2,1,2,1) (1,1,1,1,1) %e A382915 (1,2,1,1,2) (1,1,2,1) %e A382915 (1,1,2,2,1) (2,2,1) %e A382915 (1,1,2,1,2) (2,1,1,1) %e A382915 (1,1,1,2,2) (3,2) %e A382915 Since (1,2,1,2,1) has all equal run-lengths (1,1,1,1,1), y is not counted under a(7). %e A382915 The a(5) = 1 through a(10) = 11 partitions: %e A382915 (2111) (3111) (2221) (5111) (3222) (3331) %e A382915 (21111) (4111) (41111) (6111) (4222) %e A382915 (31111) (311111) (22221) (7111) %e A382915 (211111) (2111111) (51111) (61111) %e A382915 (321111) (421111) %e A382915 (411111) (511111) %e A382915 (2211111) (3211111) %e A382915 (3111111) (4111111) %e A382915 (21111111) (22111111) %e A382915 (31111111) %e A382915 (211111111) %t A382915 Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Length/@Split[#]&]=={}&]],{n,0,15}] %Y A382915 The complement for distinct run-lengths is A239455, ranked by A351294. %Y A382915 For distinct instead of equal run-lengths we have A351293, ranked by A351295. %Y A382915 These partitions are ranked by A382879, by signature A382914. %Y A382915 The complement is counted by A383013. %Y A382915 A000041 counts integer partitions, strict A000009. %Y A382915 A056239 adds up prime indices, row sums of A112798. %Y A382915 A304442 counts partitions with equal run-sums, ranks A353833. %Y A382915 A329738 counts compositions with equal run-lengths, ranks A353744. %Y A382915 A382857 counts permutations of prime indices with equal run-lengths. %Y A382915 Cf. A003242, A047966, A238279, A329739, A351201, A351290, A351596, A382773. %K A382915 nonn %O A382915 0,7 %A A382915 _Gus Wiseman_, Apr 12 2025 %E A382915 More terms from _Bert Dobbelaere_, Apr 26 2025