cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382916 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^2 ).

This page as a plain text file.
%I A382916 #11 Apr 09 2025 07:28:59
%S A382916 1,1,6,41,316,2636,23192,211926,1992032,19138016,187091252,1855104372,
%T A382916 18612229836,188601299149,1927443803738,19843158497163,
%U A382916 205602235405524,2142401581747657,22436439910929038,236023405797017891,2492914862240934612,26426682321857813417
%N A382916 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^2 ).
%F A382916 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1-x)^2.
%F A382916 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
%o A382916 (PARI) a(n, r=1, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
%Y A382916 Cf. A349331, A382917.
%Y A382916 Cf. A382920.
%K A382916 nonn
%O A382916 0,3
%A A382916 _Seiichi Manyama_, Apr 08 2025