This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382917 #10 Apr 09 2025 07:28:35 %S A382917 1,1,7,52,432,3878,36694,360498,3642534,37613947,395204413,4211469308, %T A382917 45409525116,494500127617,5430864937915,60083846523038, %U A382917 669005596426438,7491245872785003,84305386452532885,953020276395635246,10816782722212619970,123218274878407738497 %N A382917 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^3 ). %F A382917 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1-x)^3. %F A382917 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %o A382917 (PARI) a(n, r=1, s=3, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A382917 Cf. A349331, A382916. %Y A382917 Cf. A382921. %K A382917 nonn %O A382917 0,3 %A A382917 _Seiichi Manyama_, Apr 08 2025