cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382918 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^2.

This page as a plain text file.
%I A382918 #11 Apr 09 2025 07:28:23
%S A382918 1,2,11,64,401,2652,18241,129216,936469,6911238,51764834,392494366,
%T A382918 3006851913,23238830982,180974578418,1418728452902,11186978492689,
%U A382918 88668723061112,706042492550773,5645331629000370,45307653034905824,364860349786846894,2947299389835541583
%N A382918 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^2.
%F A382918 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(3/2) / (1-x)^2 )^2.
%F A382918 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
%F A382918 G.f.: B(x)^2, where B(x) is the g.f. of A366176.
%o A382918 (PARI) a(n, r=2, s=2, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
%Y A382918 Cf. A006319, A382920.
%Y A382918 Cf. A366176.
%K A382918 nonn
%O A382918 0,2
%A A382918 _Seiichi Manyama_, Apr 08 2025