This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382920 #10 Apr 09 2025 14:16:14 %S A382920 1,3,21,160,1320,11511,104451,976317,9337182,90937403,898861308, %T A382920 8994246132,90932043400,927452701605,9531607969788,98609173435172, %U A382920 1026121044859890,10733030463200814,112783955395845926,1190060614961391945,12604133970419399208,133945684546835994915 %N A382920 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^3. %F A382920 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(4/3) / (1-x)^2 )^3. %F A382920 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %F A382920 G.f.: B(x)^3, where B(x) is the g.f. of A382916. %o A382920 (PARI) a(n, r=3, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A382920 Cf. A006319, A382918. %Y A382920 Cf. A382916. %K A382920 nonn %O A382920 0,2 %A A382920 _Seiichi Manyama_, Apr 08 2025