This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382923 #15 Apr 14 2025 07:39:26 %S A382923 1,0,1,0,2,3,0,3,5,7,0,4,13,16,16,0,5,14,33,40,35,0,6,29,70,105,100, %T A382923 75,0,7,27,88,207,292,244,159,0,8,51,152,336,604,758,576,334,0,9,44, %U A382923 206,588,1161,1749,1920,1329,696,0,10,79,300,882,2076,3685,4924,4802,3028,1442 %N A382923 Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros. %C A382923 For some m > 0, an m-composition of n is a rectangular array of nonnegative integers with m rows, at least one nonzero entry in each column, and having the sum of all entries equal to n. %H A382923 John Tyler Rascoe, <a href="/A382923/b382923.txt">Antidiagonals n = 0..30, flattened</a> %F A382923 G.f.: G(t,x) = 1 + Sum_{m>0} -1 + 1/(1 + t^m - (t + x/(1 - x))^m). %e A382923 Square array begins: %e A382923 1, 0, 0, 0, 0, 0, ... %e A382923 1, 2, 3, 4, 5, 6, ... %e A382923 3, 5, 13, 14, 29, 27, ... %e A382923 7, 16, 33, 70, 88, 152, ... %e A382923 16, 40, 105, 207, 336, 588, ... %e A382923 35, 100, 292, 604, 1161, 2076, ... %e A382923 ... %e A382923 A(2,0) = 3 counts: %e A382923 [2], [1,1], [1] %e A382923 [1]. %e A382923 A(2,1) = 5 counts: %e A382923 [2] [0] [1] [1] [0] %e A382923 [0], [2], [1] [0] [1] %e A382923 [0], [1], [1]. %o A382923 (PARI) %o A382923 G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])} %o A382923 G_tx(10) %Y A382923 Cf. A038207, A101509 (column k=0), A181331, A261780, A323429, A382924 (main diagonal). %K A382923 nonn,easy,tabl %O A382923 0,5 %A A382923 _John Tyler Rascoe_, Apr 09 2025