This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382927 #53 May 13 2025 15:09:31 %S A382927 2,181,151,131,101,11,17471,16661,16561,16361,16061,15551,15451,14741, %T A382927 14341,13931,13831,13331,12821,12721,12421,11411,11311,10601,10501, %U A382927 10301,1884881,1883881,1881881,1880881,1879781,1878781,1876781,1865681,1856581,1853581,1851581 %N A382927 Smallest beginning of a sequence of exactly n consecutive palindromic primes, all ending with the same digit. %H A382927 Robert Israel, <a href="/A382927/b382927.txt">Table of n, a(n) for n = 1..10000</a> %e A382927 a(6) = 11, because 11 initiates a sequence of exactly six consecutive palindromic primes: 11, 101, 131, 151, 181 and 191, each ending in the same digit 1. %p A382927 # with A002385 e.g. from the b-file for that sequence %p A382927 R:= NULL: %p A382927 d:= 2: count:= 1: m:= 1; %p A382927 for i from 2 while m < 100 do %p A382927 dp:= A002385[i] mod 10; %p A382927 if d = dp then count:= count+1 %p A382927 else %p A382927 d:= dp; %p A382927 if count >= m then %p A382927 R:= R, seq(A002385[i-j],j=m..count); %p A382927 m:= count+1; %p A382927 fi; %p A382927 count:= 1; %p A382927 fi %p A382927 od: %p A382927 R; # _Robert Israel_, May 13 2025 %o A382927 (Python) %o A382927 from sympy import isprime %o A382927 from itertools import count, islice, product %o A382927 def palprimes(): # generator of palprimes %o A382927 yield from [2, 3, 5, 7, 11] %o A382927 for d in count(3, 2): %o A382927 for last in "1379": %o A382927 for p in product("0123456789", repeat=d//2-1): %o A382927 left = "".join(p) %o A382927 for mid in [[""], "0123456789"][d&1]: %o A382927 t = int(last + left + mid + left[::-1] + last) %o A382927 if isprime(t): %o A382927 yield t %o A382927 def agen(): # generator of terms %o A382927 adict, n, lastdigit, vlst = dict(), 1, 0, [2] %o A382927 for p in palprimes(): %o A382927 if p%10 == lastdigit: %o A382927 vlst.append(p) %o A382927 else: %o A382927 if len(vlst) >= n: %o A382927 for i in range(n, len(vlst)+1): %o A382927 if i not in adict: %o A382927 adict[i] = vlst[-i] %o A382927 while n in adict: yield adict[n]; n += 1 %o A382927 lastdigit, vlst = p%10, [p] %o A382927 print(list(islice(agen(), 40))) # _Michael S. Branicky_, Apr 13 2025 %Y A382927 Cf. A002385, A054681. %K A382927 nonn,base %O A382927 1,1 %A A382927 _Jean-Marc Rebert_, Apr 13 2025