cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382932 a(n) is the altitude of the Pythagorean triangle (A046083(A382931(n)), A046084(A382931(n)), A009000(A382931(n))).

This page as a plain text file.
%I A382932 #15 May 09 2025 00:51:15
%S A382932 12,24,36,48,60,72,60,84,96,108,120,132,120,144,156,120,168,180,192,
%T A382932 204,216,228,240,180,252,264,276,240,288,300,168,312,324,240,336,348,
%U A382932 360,372,384,396,420,300,408,360,420,432,444,456,468,480,360,492,504,516
%N A382932 a(n) is the altitude of the Pythagorean triangle (A046083(A382931(n)), A046084(A382931(n)), A009000(A382931(n))).
%C A382932 All terms are divisible by 12. Proof: (Start)
%C A382932 Let (a, b, c) be a primitive Pythagorean triple. Since gcd(a, b, c) = 1, all and only the Pythagorean triples (k*c*a, k*c*b, k*c^2) have an integer altitude h = (k*c*a*k*c*b)/(k*c^2) = k*a*b, where k is a positive integer.
%C A382932 With a = p^2 - q^2 and b = 2*p*q follows h = 2*k*p*q*(p^2 - q^2) = k*2*p*q*(p + q)*(p - q), where p > q > 0, gcd(p,q) = 1 and p or q is even.
%C A382932 It is to show that p*q*(p + q)*(p - q) is divisible by 6. Since p or q is divisible by 2, it remains to show that p*q*(p + q)*(p - q) is divisible by 3.
%C A382932 If 3 is a divisor of p or q, p*q is divisible by 3. If p mod 3 = 1 and q mod 3 = 2 or p mod 3 = 2 and q mod 3 = 1, then p + q is divisible by 3. If p mod 3 = q mod 3 = 1 or p mod 3 = q mod 3 = 2, then p - q is divisible by 3.
%C A382932 It follows that all terms are divisible by 12. (End)
%H A382932 Felix Huber, <a href="/A382932/b382932.txt">Table of n, a(n) for n = 1..10000</a>
%H A382932 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>
%F A382932 a(n) = A046083(A382931(n))*A046084(A382931(n))/A009000(A382931(n)).
%e A382932 a(1) = 12 because the Pythagorean triangle (A046083(A382931(1)), A046084(A382931(1)), A009000(A382931(1))) = (A046083(7), A046084(7), A009000(7)) = (15, 20, 25) has the integer altitude 15*20/25 = 12.
%p A382932 A382932:=proc(H) # All hypotenuses <= H.
%p A382932     local a,b,c,k,p,q,L,M;
%p A382932     L:=[];
%p A382932     M:=[];
%p A382932     for p from 2 to floor(sqrt(H-1)) do
%p A382932         for q to min(p-1,floor(sqrt(H-p^2))) do
%p A382932             if gcd(p,q)=1 and is(p-q,odd) then
%p A382932                 a:=p^2-q^2;
%p A382932                 b:=2*p*q;
%p A382932                 c:=p^2+q^2;
%p A382932                 for k to iquo(H,c) do
%p A382932                     L:=[op(L),[k*c,k*max(a,b),k*a*b/c]]
%p A382932                 od
%p A382932             fi
%p A382932         od
%p A382932     od;
%p A382932     L:=sort(L);
%p A382932     for k to nops(L) do
%p A382932         if is(L[k,3],integer) then
%p A382932            M:=[op(M),L[k,3]]
%p A382932         fi
%p A382932     od;
%p A382932     return op(M)
%p A382932 end proc;
%p A382932 A382932(1075);
%Y A382932 Cf. A008594, A009000, A046083, A046084, A382931.
%K A382932 nonn
%O A382932 1,1
%A A382932 _Felix Huber_, Apr 13 2025