cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382941 a(n) = exp(Sum_{d|n} A382883(d)*log(n/d)).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 4, 3, 1, 11, 3, 13, 1, 1, 16, 17, 2, 19, 5, 1, 1, 23, 18, 5, 1, 9, 7, 29, 1, 31, 64, 1, 1, 1, 36, 37, 1, 1, 50, 41, 1, 43, 11, 5, 1, 47, 72, 7, 2, 1, 13, 53, 12, 1, 98, 1, 1, 59, 15, 61, 1, 7, 512, 1, 1, 67, 17, 1, 1, 71, 648, 73, 1, 3, 19
Offset: 1

Views

Author

Peter Luschny, Apr 09 2025

Keywords

Comments

See the comments in A382883.

Crossrefs

Programs

  • Maple
    h := proc(n) option remember; local j; ifelse(n = 1, 1,
    -add(ifelse(j = 1, 1, padic:-ordp(n, j))*h(j), j = 1..n-1)) end:
    a := n -> local d; simplify(exp(add(h(d)*log(n/d), d in numtheory:-divisors(n)))):
    seq(a(n), n = 1..76);
  • Mathematica
    V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := Exp[DivisorSum[n, f[#] * Log[n/#] &]]; Array[a, 100] (* Amiram Eldar, Apr 29 2025 *)
  • SageMath
    def A382941(n: int) -> int: return simplify(exp(sum(A382883(d)*log(n//d) for d in n.divisors())))
    print([A382941(n) for n in srange(1, 76)]);

Formula

Restricting the sum to prime divisors of n gives A205959(n).
a(k) = 1 <=> k in A000469 <=> k is a nonprime squarefree number.
a(k) != 1 <=> k in A383263 <=> k is prime or divisible by a square greater than 1.