A382944 Table read by rows: T(n, k) = valuation(n, k) for k >= 2, 1 for k = 1 and 0^n for k = 0.
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 1, 0, 1; [4] 0, 1, 2, 0, 1; [5] 0, 1, 0, 0, 0, 1; [6] 0, 1, 1, 1, 0, 0, 1; [7] 0, 1, 0, 0, 0, 0, 0, 1; [8] 0, 1, 3, 0, 1, 0, 0, 0, 1; [9] 0, 1, 0, 2, 0, 0, 0, 0, 0, 1;
Programs
-
Maple
A382944 := proc(n, k) if k = 0 then 0^n elif k = 1 then 1 else padic:-ordp(n, k) fi end: seq(seq(A382944(n, k), k = 0..n), n = 0..12);
-
Mathematica
T[n_, 0] := T[n, 0] = Boole[n == 0]; T[n_, 1] := T[n, 1] = 1; T[n_, k_] := T[n, k] = IntegerExponent[n, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2025 *)
-
SageMath
@cached_function def A382944(n: int, k: int) -> int: if not ZZ(k).divides(n) or k > n: return 0 if k == n or k == 1: return 1 return valuation(n, k) for n in range(13): print([n], [A382944(n, k) for k in range(n + 1)])
Comments