This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382945 #13 Apr 14 2025 09:07:52 %S A382945 9,28,18,16,40,36,42,64,105,45,154,105,130,168,260,120,340,96,266,275, %T A382945 495,231,460,351,450,273,792,175,928,280,682,1024,308,459,1302,741, %U A382945 962,665,1612,288,1804,560,1290,1265,2139,1035,1974,540,952,715,2720,585 %N A382945 a(n) is the least positive integer k having a divisor d such that k/d is not a power of n and the base n expansions of k and d, possibly with leading zeros, have, up to order, the same digits. %C A382945 If k/d is a power of n, then k = d * n^z for some z >= 0 and, trivially, the base n expansions of k (with z trailing zeros) and d (with z leading zeros) have the same digits. %C A382945 The sequence is well defined: for any n > 1, n^3 + 1 is divisible by n + 1, (n^3 + 1) / (n + 1) is not a power of n, and the base n expansions of n^3 + 1 and n + 1 have, up to order, the same digits. %H A382945 Rémy Sigrist, <a href="/A382945/b382945.txt">Table of n, a(n) for n = 2..2501</a> %F A382945 a(n) <= n^3 + 1. %e A382945 The first terms, alongside an appropriate divisor d, in bases 10 and n, are: %e A382945 n a(n) d a(n) in base n d in base n %e A382945 -- ---- --- -------------- ----------- %e A382945 2 9 3 1,0,0,1 1,1 %e A382945 3 28 4 1,0,0,1 1,1 %e A382945 4 18 6 1,0,2 1,2 %e A382945 5 16 8 3,1 1,3 %e A382945 6 40 10 1,0,4 1,4 %e A382945 7 36 12 5,1 1,5 %e A382945 8 42 21 5,2 2,5 %e A382945 9 64 16 7,1 1,7 %e A382945 10 105 15 1,0,5 1,5 %e A382945 11 45 15 4,1 1,4 %e A382945 12 154 22 1,0,10 1,10 %e A382945 13 105 21 8,1 1,8 %e A382945 14 130 65 9,4 4,9 %e A382945 15 168 56 11,3 3,11 %e A382945 16 260 20 1,0,4 1,4 %o A382945 (PARI) a(n) = { %o A382945 for (k = 1, oo, %o A382945 my (t = vecsort(select(sign, digits(k, n)))); %o A382945 fordiv (k, d, %o A382945 if ((k/d) != n^valuation(k/d, n) %o A382945 && vecsort(select(sign, digits(d, n)))==t, %o A382945 return (k);););); } %Y A382945 Cf. A096092, A382946. %K A382945 nonn,base %O A382945 2,1 %A A382945 _Rémy Sigrist_, Apr 09 2025