This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382946 #11 Apr 14 2025 09:07:47 %S A382946 -1,64,36,16,700,36,42,64,3105,45,594,105,130,168,945,120,1666,96,266, %T A382946 275,2457,231,460,351,450,273,7938,175,7714,280,682,1024,308,459,7525, %U A382946 741,962,665,27300,288,17097,560,1290,1265,18540,1035,1974,540,952,715 %N A382946 a(n) is the least positive integer k having a proper divisor d such that the base n expansions of k and d, without leading zeros, have, up to order, the same digits, or a(n) = -1 if no such k exists. %C A382946 Conjecture: a(n) > 0 for any n > 2. %H A382946 Rémy Sigrist, <a href="/A382946/b382946.txt">Table of n, a(n) for n = 2..1000</a> %e A382946 The first terms, alongside an appropriate divisor d, in bases 10 and n, are: %e A382946 n a(n) d n in base n d in base n %e A382946 -- ---- ---- ----------- ----------- %e A382946 2 -1 N/A N/A N/A %e A382946 3 64 32 2,1,0,1 1,0,1,2 %e A382946 4 36 18 2,1,0 1,0,2 %e A382946 5 16 8 3,1 1,3 %e A382946 6 700 350 3,1,2,4 1,3,4,2 %e A382946 7 36 12 5,1 1,5 %e A382946 8 42 21 5,2 2,5 %e A382946 9 64 16 7,1 1,7 %e A382946 10 3105 1035 3,1,0,5 1,0,3,5 %e A382946 11 45 15 4,1 1,4 %e A382946 12 594 198 4,1,6 1,4,6 %e A382946 13 105 21 8,1 1,8 %e A382946 14 130 65 9,4 4,9 %e A382946 15 168 56 11,3 3,11 %e A382946 16 945 315 3,11,1 1,3,11 %o A382946 (PARI) a(n) = { %o A382946 if (n==2, return (-1)); %o A382946 for (k = 1, oo, %o A382946 my (t = vecsort(digits(k, n))); %o A382946 fordiv (k, d, %o A382946 if (d < k && vecsort(digits(d, n))==t, %o A382946 return (k);););); } %o A382946 (Python) %o A382946 from sympy import divisors %o A382946 from sympy.ntheory import digits %o A382946 from itertools import count %o A382946 def a(n): %o A382946 if n == 2: %o A382946 return -1 %o A382946 for k in count(2*n): %o A382946 divs, kdigs = divisors(k), sorted(digits(k, n)[1:]) %o A382946 for d in sorted(divs[:-1], reverse=True): %o A382946 ddigs = sorted(digits(d, n)[1:]) %o A382946 if ddigs == kdigs: %o A382946 return k %o A382946 if len(ddigs) < len(kdigs): %o A382946 break %o A382946 print([a(n) for n in range(2, 52)]) # _Michael S. Branicky_, Apr 13 2025 %Y A382946 Cf. A023094, A090056, A382945. %K A382946 sign,base %O A382946 2,2 %A A382946 _Rémy Sigrist_, Apr 09 2025