cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382953 Numbers with at least one factorization for which the factors can be partitioned into 2 or more distinct subsets with equal sums.

This page as a plain text file.
%I A382953 #12 Apr 12 2025 12:46:37
%S A382953 16,30,48,54,64,70,72,84,96,120,126,128,144,160,162,180,192,198,210,
%T A382953 216,240,243,250,252,256,264,270,280,286,288,300,308,320,324,330,336,
%U A382953 360,378,384,390,396,400,420,432,440,448,462,468,480,486,495,504,510,512
%N A382953 Numbers with at least one factorization for which the factors can be partitioned into 2 or more distinct subsets with equal sums.
%C A382953 Here "distinct" means that no partition contains the same subset of factors, e.g. 4 is not a term because {2} == {2}.
%C A382953 Because 2 + 2 = 2 * 2 = 4, many terms have multiple instances that differ only by factors {2, 2} vs. {4}, except in some cases where such substitutions would create indistinct subsets, e.g. while 16 is a term for partition set {{2, 2}, {4}}, {{2, 2}, {2, 2}} and {{4}, {4}} do not count as additional instances.
%C A382953 For primes p and integers x >= 0, p^(p+2+2x) and p^(2p+3+x) are terms.
%C A382953 For integers x and y >= 0, (4x+4)^(y+2) and (4x+6)^(y+3) are terms.
%C A382953 First few terms with record counts of instances: 16 (1 instance), 48 (2), 120 (3), 240 (6), 576 (8), 720 (9), 768 (12).
%C A382953 If k is a term, then 4k is also a term. - _Ivan N. Ianakiev_, Apr 10 2025
%e A382953 a(1) = 16: 2 * 2 * 4 = 16 and 2 + 2 = 4.
%e A382953 a(2) = 30: 2 * 3 * 5 = 30 and 2 + 3 = 5.
%e A382953 a(3) = 48: 2 * 2 * 2 * 6 = 48 and 2 + 2 + 2 = 6, and also 2 * 4 * 6 = 48 and 2 + 4 = 6.
%e A382953 a(5) = 64: 2 * 2 * 2 * 2 * 4 = 64 and 2 + 2 + 2 = 2 + 4.
%e A382953 a(39) = 384: 2 * 2 * 2 * 2 * 4 * 6 = 384 and 2 + 2 + 2 = 2 + 4 = 6 (plus 4 other instances).
%t A382953 ok[n_]:=Catch@ Block[{t, d=Divisors@n,f}, f[y_]:=Block[{L={}, r}, r[x_,m_,c_]:= If[x==1, AppendTo[L,c], r[x/#, #, Append[c,#]]& /@ Select[ Divisors@x, #>=m&];]; f[y,2,{}]; L]; Do[t=Plus@@@ s[d[[i]]]; If[d[[i]]^2!=n, Intersection[t, Plus@@@ s[n/d[[i]]]] != {} && Throw@True, Sort@t != Union@t && Throw@True],{i, 2, Ceiling[ Length@d/2]}]; False]; Select[Range@ 512,ok] (* _Giovanni Resta_, Apr 10 2025 *)
%o A382953 (PARI) a382953_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(#f && r==1, my(c=0, s=vecsum(Vec(f)), d=divisors(s)); for(i=2, #d, my(z=s/d[i]); if(z<vecmax(Vec(f)), break); c+=a382953_part(Vec(matreduce(Vec(f))), z)); return(c)); my(d, c=0); fordiv(r, d, if(#f, if(d<f[#f], next), d==1 && x>1, next); listput(f, d); c+=a382953_count(x, f); listpop(f)); return(c)}
%o A382953 a382953_part(f, z, rvs=0, v=List())={my(c=0); if(#v==#f[2], if(sum(i=1, #v, f[1][i]*v[i])<z, return(0)); /* vs = vector signature for distinctiveness test */ my(vs=prod(i=1, #v, prime(i)^v[i])); if(vs<=rvs, return(0)); rvs=vs; my(f2=f); for(i=1, #f2[2], f2[2][i]-=v[i]); return(if(vecsum(f2[2])==0, 1, a382953_part(f2, z, rvs)))); for(i=0, f[2][#v+1], listput(v, i); if(sum(i=1, #v, f[1][i]*v[i])<=z, c+=a382953_part(f, z, rvs, v)); listpop(v); 0); return(c)}
%Y A382953 Cf. A083207, A322657, A255265 (subsequence).
%K A382953 nonn
%O A382953 1,1
%A A382953 _Charles L. Hohn_, Apr 09 2025