This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382961 #32 Sep 01 2025 18:32:41 %S A382961 1,1,2,1,1,3,1,1,2,1,1,1,1,2,1,1,4,1,1,2,1,1,1,3,1,1,2,1,1,1,2,1,1,1, %T A382961 5,1,1,2,1,1,1,2,1,1,3,1,1,2,1,1,1,1,2,1,1,1,3,1,2,1,1,1,1,2,1,1,4,1, %U A382961 1,2,1,1,1,3,1,1,2,1,1,1,2,1,1,1,2,1,1,1,3,1,1,2,1,1,1,6,1,1,2,1,1,1,2,1,1,1,3,1,2,1,1,1,4,1,1,2,1,1,1,2 %N A382961 A sequence constructed by greedily sampling the logarithmic distribution for parameter value 1/2 so as to minimize discrepancy. %C A382961 The geometric mean approaches A381898 = exp(-PolyLog'(1,1/2)/log(2)) in the limit. %C A382961 The logarithmic distribution PDF is p(i) = 1/(log(2)*(2^i)*i). %H A382961 Jwalin Bhatt, <a href="/A382961/b382961.txt">Table of n, a(n) for n = 1..10000</a> %H A382961 Wikipedia, <a href="https://en.wikipedia.org/wiki/Logarithmic_distribution">Logarithmic distribution</a> %e A382961 Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k). %e A382961 We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value. %e A382961 | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | %e A382961 |---|---------------|---------------|---------------|--------| %e A382961 | 1 | 0.721 | - | - | 1 | %e A382961 | 2 | 0.442 | 0.360 | - | 1 | %e A382961 | 3 | 0.164 | 0.541 | - | 2 | %e A382961 | 4 | 0.885 | -0.278 | 0.240 | 1 | %e A382961 | 5 | 0.606 | -0.098 | 0.300 | 1 | %e A382961 | 6 | 0.328 | 0.082 | 0.360 | 3 | %t A382961 probCountDiff[j_, k_, count_] := k/(Log[2]*(2^j)*j) - Lookup[count, j, 0] %t A382961 samplePDF[n_] := Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable}, %t A382961 coeffs = ConstantArray[0, n]; unreachedVal = 1; counts = <||>; %t A382961 Do[probCountDiffs = Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}]; %t A382961 mostProbable = First@FirstPosition[probCountDiffs, Max[probCountDiffs]]; %t A382961 If[mostProbable == unreachedVal, unreachedVal++]; coeffs[[k]] = mostProbable; %t A382961 counts[mostProbable] = Lookup[counts, mostProbable, 0] + 1; , {k, 1, n}]; coeffs] %t A382961 A382961 = samplePDF[120] %Y A382961 Cf. A381617, A381898, A381900, A383238. %K A382961 nonn,changed %O A382961 1,3 %A A382961 _Jwalin Bhatt_, Apr 10 2025