cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382971 Population of elementary triangular automaton rule 146 at generation n, starting from a lone 1 cell at generation 0.

This page as a plain text file.
%I A382971 #12 May 14 2025 09:05:11
%S A382971 1,4,7,13,7,28,25,46,13,46,43,79,49,133,73,160,55,109,91,211,73,238,
%T A382971 199,337,133,343,187,388,211,523,277,607,205,478,241,559,259,679,361,
%U A382971 748,379,805,493,967,523,1042,709,1372,391,976,709,1501,649,1612,895
%N A382971 Population of elementary triangular automaton rule 146 at generation n, starting from a lone 1 cell at generation 0.
%C A382971 An Elementary Triangular Automaton (ETA) is a cellular automaton in the triangular grid where cells hold binary states and rules are local to the first neighborhood. There are 256 possible ETA rules.
%C A382971 Rule 146 (10010010 in binary):
%C A382971   -----------------------------------------------
%C A382971   |state of the cell            |1|1|1|1|0|0|0|0|
%C A382971   |sum of the neighbors' states |3|2|1|0|3|2|1|0|
%C A382971   |cell's next state            |1|0|0|1|0|0|1|0|
%C A382971   -----------------------------------------------
%H A382971 Paul Cousin, <a href="/A382971/b382971.txt">Table of n, a(n) for n = 0..16384</a>
%H A382971 Paul Cousin, <a href="/A382971/a382971.pdf">Illustration for n = 0..128</a>
%H A382971 Paul Cousin, <a href="https://triangular-automata.net">Triangular Automata</a>
%H A382971 Paul Cousin, <a href="https://triangular-automata.net/rules.html?rule=146">Rule 146</a>
%H A382971 Paul Cousin, <a href="https://triangular-automata.net/?p=integer-sequences">Triangular Automata Integer Sequences</a>
%H A382971 Paul Cousin, <a href="https://doi.org/10.25088/ComplexSystems.33.3.253">Triangular Automata: The 256 Elementary Cellular Automata of the Two-Dimensional Plane</a>, Complex Systems, 33(3), 2024, pp. 253-276.
%Y A382971 Cf. A382972, A383028, A380012, A380670, A381734, A372581.
%K A382971 nonn
%O A382971 0,2
%A A382971 _Paul Cousin_, Apr 10 2025