cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382980 a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k - y^k).

This page as a plain text file.
%I A382980 #17 Apr 14 2025 17:32:54
%S A382980 1,0,0,0,0,2,0,4,2,6,4,10,6,14,10,14,10,20,6,22,2,10,14,16,-32,14,6,
%T A382980 -26,-20,12,-56,28,-2,-38,96,56,-38,200,298,82,338,460,446,666,852,
%U A382980 456,1580,1172,1048,1608,2426,1236,2810,2222,2824,2066,3716,1612,5498
%N A382980 a(n) = [(x*y)^n]  Product_{k>=1} (1 + x^k - y^k).
%H A382980 Vincenzo Librandi, <a href="/A382980/b382980.txt">Table of n, a(n) for n = 0..130</a>
%t A382980 a[n_]:=SeriesCoefficient[Product[(1+x^k-y^k),{k,1,n}],{x,0,n},{y,0,n}];Table[a[n],{n,0,60}] (* _Vincenzo Librandi_, Apr 13 2025 *)
%o A382980 (Magma) nmax := 60; prec := 2*nmax + 10; Rx<x> := PowerSeriesRing(Rationals(), prec); Rxy<y> := PowerSeriesRing(Rx, prec); P := Rxy!1; for k in [1..prec] do P *:= (1 + x^k - y^k); end for; seq := [Coefficient(Coefficient(P, n), n) : n in [0..nmax]]; print seq; // _Vincenzo Librandi_, Apr 13 2025
%Y A382980 Main diagonal of A382975.
%Y A382980 Cf. A365662.
%K A382980 sign
%O A382980 0,6
%A A382980 _Seiichi Manyama_, Apr 11 2025