cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382982 Primes of the form Sum_{i=j..k} prime(i)^prime(i).

This page as a plain text file.
%I A382982 #18 Apr 17 2025 09:51:37
%S A382982 31,826699,303160419086407
%N A382982 Primes of the form Sum_{i=j..k} prime(i)^prime(i).
%C A382982 Primes that are sums of some number of consecutive terms of A051674.
%H A382982 Robert Israel, <a href="/A382982/b382982.txt">Table of n, a(n) for n = 1..7</a>
%e A382982 a(1) = 31 = 2^2 + 3^3 = Sum_{i=1..2} prime(i)^prime(i).
%e A382982 a(2) = 826699 = Sum_{i=1..4} prime(i)^prime(i).
%e A382982 a(3) = 303160419086407 = Sum_{i=4..6} prime(i)^prime(i).
%e A382982 a(4) = Sum_{i=1..24} prime(i)^prime(i) has 174 digits.
%e A382982 a(5) = Sum_{i=20..34} prime(i)^prime(i) has 298 digits.
%e A382982 a(6) = Sum_{i=30..38} prime(i)^prime(i) has 361 digits.
%e A382982 a(7) = Sum_{i=38..48} prime(i)^prime(i) has 524 digits.
%e A382982 a(8) = Sum_{i=46..84} prime(i)^prime(i) has 1142 digits.
%e A382982 a(9) = Sum_{i= 7..85} prime(i)^prime(i) has 1161 digits.
%p A382982 select(isprime, [seq(seq(add(ithprime(i)^ithprime(i),i=j..k),j=1..k-1),k=1..76)]);
%Y A382982 Cf. A051674, A061789, A340392.
%K A382982 nonn
%O A382982 1,1
%A A382982 _Zak Seidov_ and _Robert Israel_, Apr 11 2025