This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382983 #12 Apr 19 2025 17:49:29 %S A382983 1,1,0,1,0,2,0,0,0,2,0,2,0,0,0,1,0,2,0,0,0,2,0,1,0,0,0,2,0,4,0,0,0,1, %T A382983 0,2,0,0,0,2,0,4,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,2,0,4,0,0,0,0,0,2,0,0, %U A382983 0,4,0,2,0,0,0,1,0,4,0,0,0,2,0,2,0,0,0,2 %N A382983 a(n) is the number of solutions to n = x*y in positive integers x <= y where x + y is prime. %C A382983 a(2*k+1) = 0 for positive integers k because in x*y = 2*k + 1 >= 3 both x and y are odd, so x + y is even and > 2 and therefore not prime. %H A382983 Felix Huber, <a href="/A382983/b382983.txt">Table of n, a(n) for n = 1..10000</a> %F A382983 a(n) <= A038548(n). %F A382983 a(2*k+1) = 0 for positive integers k. %e A382983 The a(12) = 2 solutions are (1, 12) and (3, 4) because 1*12 = 12 and 1 + 12 = 13 is prime and 3*4 = 12 and 3 + 4 = 7 is prime. %p A382983 A382983:=proc(n) %p A382983 local a,i,L; %p A382983 if n=1 then return 1 fi; %p A382983 a:=0; %p A382983 L:=NumberTheory:-Divisors(n); %p A382983 for i to nops(L)/2 do %p A382983 if isprime(L[i]+L[nops(L)-i+1]) then %p A382983 a:=a+1 %p A382983 fi %p A382983 od; %p A382983 return a %p A382983 end proc; %p A382983 seq(A382983(n),n=1..88); %o A382983 (PARI) a(n) = sumdiv(n, d, (d<=n/d) && isprime(d+n/d)); \\ _Michel Marcus_, Apr 14 2025 %Y A382983 Cf. A000040, A004526, A038548, A382984, A382985. %K A382983 nonn,easy %O A382983 1,6 %A A382983 _Felix Huber_, Apr 14 2025