This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382992 #22 Apr 24 2025 07:59:22 %S A382992 0,1,2,9,38,190,1105,7465,57808,505924,4940320,53248819,627848796, %T A382992 8037734786,111017325240,1645384681388,26044845197271,438499277778649, %U A382992 7824114643729925,147476551001252541,2928074880767250057,61078483577649281698,1335438738400978500931 %N A382992 Number of compositions of n that have at least 1 part equal to 1 and any part 1 at position k can be k different colors. %H A382992 Alois P. Heinz, <a href="/A382992/b382992.txt">Table of n, a(n) for n = 0..450</a> %F A382992 G.f.: -x^2/(1-x-x^2) + Sum_{i>0} Product_{j=1..i} ( j*x + x^2/(1-x) ). %F A382992 a(n) = A382991(n) - A000045(n-1). %e A382992 a(3) = 9 counts: (2, 1_a), (2, 1_b), (1_a, 2), (1_a, 1_a, 1_a), (1_a, 1_a, 1_b), (1_a, 1_a, 1_c), (1_a, 1_b, 1_a), (1_a, 1_b, 1_b), (1_a, 1_b, 1_c). %p A382992 b:= proc(n, i, t) option remember; `if`(n=0, t, add( %p A382992 b(n-j, i+1, `if`(j=1, 1, t))*`if`(j=1, i, 1), j=1..n)) %p A382992 end: %p A382992 a:= n-> b(n, 1, 0): %p A382992 seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 23 2025 %o A382992 (PARI) %o A382992 A_x(N) = {my(x='x+O('x^N)); Vec(-x^2/(1-x-x^2) + sum(i=1,N, prod(j=1,i, j*x + x^2/(1-x))))} %o A382992 A_x(30) %Y A382992 Cf. A000045, A008275, A011782, A088305, A238351, A240736, A382991. %K A382992 nonn,easy %O A382992 0,3 %A A382992 _John Tyler Rascoe_, Apr 11 2025 %E A382992 Edited by _Alois P. Heinz_, Apr 23 2025