cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383009 Indices of the even terms in the sequence of cubefree numbers.

This page as a plain text file.
%I A383009 #7 Apr 12 2025 09:42:13
%S A383009 2,4,6,9,11,13,16,18,20,23,24,26,29,31,33,36,38,40,43,45,49,51,53,56,
%T A383009 58,60,63,65,67,69,71,73,76,78,80,83,85,87,90,93,96,98,100,103,105,
%U A383009 106,109,111,113,115,117,119,122,124,126,129,131,133,137,139,142,144
%N A383009 Indices of the even terms in the sequence of cubefree numbers.
%C A383009 The asymptotic density of this sequence is 3/7.
%C A383009 In general, the asymptotic density of the indices of the even terms in the sequence of k-free numbers (numbers that are not divisible by a k-th power other than 1), for k >= 2, is (2^(k-1)-1)/(2^k-1).
%H A383009 Amiram Eldar, <a href="/A383009/b383009.txt">Table of n, a(n) for n = 1..10000</a>
%F A383009 A383004(a(n)) > 0.
%t A383009 cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Position[Select[Range[250], cubeFreeQ], _?EvenQ] // Flatten
%o A383009 (PARI) iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
%o A383009 list(lim) = {my(c = 0); for(k = 1, lim, if(iscubefree(k), c++; if(!(k % 2), print1(c, ", ")))); }
%Y A383009 Cf. A004709, A381822, A383004, A383008.
%K A383009 nonn,easy
%O A383009 1,1
%A A383009 _Amiram Eldar_, Apr 12 2025