This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383014 #8 Apr 25 2025 08:46:52 %S A383014 1,2,3,4,5,7,8,9,11,12,13,16,17,19,23,25,27,29,31,32,36,37,40,41,43, %T A383014 47,48,49,53,59,61,63,64,67,71,73,79,81,83,89,97,101,103,107,108,109, %U A383014 112,113,121,125,127,128,131,137,139,144,149,151,157,163,167,169 %N A383014 Numbers whose prime indices can be partitioned into constant blocks with a common sum. %C A383014 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A383014 The prime indices of 36 are {1,1,2,2}, and a partition into constant blocks with a common sum is: {{2},{2},{1,1}}, so 36 is in the sequence. %e A383014 The prime indices of 43200 are {1,1,1,1,1,1,2,2,2,3,3}, and a partition into constant blocks with a common sum is: {{{1,1,1,1,1,1},{2,2,2},{3,3}}}, so 43200 is in the sequence. %e A383014 The prime indices of 520000 are {1,1,1,1,1,1,3,3,3,3,6} and a partition into constant blocks with a common sum is: {{1,1,1,1,1,1},{3,3},{3,3},{6}}, so 520000 is in the sequence. %e A383014 The terms together with their prime indices begin: %e A383014 1: {} %e A383014 2: {1} %e A383014 3: {2} %e A383014 4: {1,1} %e A383014 5: {3} %e A383014 7: {4} %e A383014 8: {1,1,1} %e A383014 9: {2,2} %e A383014 11: {5} %e A383014 12: {1,1,2} %e A383014 13: {6} %e A383014 16: {1,1,1,1} %e A383014 17: {7} %e A383014 19: {8} %e A383014 23: {9} %e A383014 25: {3,3} %e A383014 27: {2,2,2} %e A383014 29: {10} %e A383014 31: {11} %e A383014 32: {1,1,1,1,1} %e A383014 36: {1,1,2,2} %e A383014 37: {12} %e A383014 40: {1,1,1,3} %t A383014 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383014 mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn, {ptn,IntegerPartitions[Length[y]]}]; %t A383014 Select[Range[100], Select[Join@@@Tuples[mce/@Split[prix[#]]], SameQ@@Total/@#&]!={}&] %Y A383014 Twice-partitions of this type (constant blocks with a common sum) are counted by A279789. %Y A383014 Includes all elements of A353833. %Y A383014 For distinct sums we have the complement of A381636. %Y A383014 For strict blocks we have the complement of A381719. %Y A383014 For distinct sums and strict blocks we have the complement of A381806. %Y A383014 The complement is A381871, counted by A381993. %Y A383014 These are the positions of positive terms in A381995. %Y A383014 Partitions of this type are counted by A383093. %Y A383014 Constant blocks: A000688, A006171, A279784, A295935, A381453 (lower), A381455 (upper). %Y A383014 A001055 counts factorizations (multiset partitions of prime indices), strict A045778. %Y A383014 A050361 counts factorizations into distinct prime powers. %Y A383014 A055396 gives least prime index, greatest A061395. %Y A383014 A056239 adds up prime indices, row sums of A112798. %Y A383014 A317141 counts coarsenings of prime indices, refinements A300383. %Y A383014 Cf. A000720, A000961, A001222, A321469, A381635, A381715, A381716, A381717. %K A383014 nonn %O A383014 1,2 %A A383014 _Gus Wiseman_, Apr 22 2025