This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383015 #9 Apr 17 2025 23:21:03 %S A383015 12,40,63,112,144,325,351,352,675,832,931,1008,1539,1600,1728,2176, %T A383015 2875,3509,3969,4864,6253,7047,7056,8775,9072,11776,12427,12544,12691, %U A383015 16128,19133,20736,20800,22464,23125,26973,29403,29696,32269,43200,49392,57967,59711 %N A383015 Numbers whose prime indices have more than one permutation with all equal run-sums. %C A383015 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %C A383015 All terms appear to have even sum of prime indices. %e A383015 The terms together with their prime indices begin: %e A383015 12: {1,1,2} %e A383015 40: {1,1,1,3} %e A383015 63: {2,2,4} %e A383015 112: {1,1,1,1,4} %e A383015 144: {1,1,1,1,2,2} %e A383015 325: {3,3,6} %e A383015 351: {2,2,2,6} %e A383015 352: {1,1,1,1,1,5} %e A383015 675: {2,2,2,3,3} %e A383015 832: {1,1,1,1,1,1,6} %e A383015 931: {4,4,8} %e A383015 1008: {1,1,1,1,2,2,4} %e A383015 1539: {2,2,2,2,8} %e A383015 1600: {1,1,1,1,1,1,3,3} %e A383015 1728: {1,1,1,1,1,1,2,2,2} %t A383015 Select[Range[100],Length[Select[Permutations[PrimePi/@Join@@ConstantArray@@@FactorInteger[#]],SameQ@@Total/@Split[#]&]]>1&] %Y A383015 Compositions of this type are counted by A353851, ranked by A353848. %Y A383015 Positions of terms > 1 in A382877, zeros A383100 (complement A383014). %Y A383015 For run-lengths instead of sums we have A383089, counted by A383090. %Y A383015 The complement for run-lengths instead of sums is A383091, counted by A383092 %Y A383015 Partitions of this type are counted by A383097. %Y A383015 A044813 lists numbers whose binary expansion has distinct run-lengths. %Y A383015 A056239 adds up prime indices, row sums of A112798. %Y A383015 A304442 counts compositions with equal run-sums, complement A382076. %Y A383015 A329739 counts compositions with distinct run-lengths, ranks A351596. %Y A383015 A353837 counts partitions with distinct run-sums, ranks A353838. %Y A383015 A353847 gives composition run-sum transformation, for partitions A353832. %Y A383015 A353932 lists run-sums of standard compositions. %Y A383015 Cf. A000720, A000961, A001221, A001222, A329738, A353833, A354584, A381636, A381871, A382857, A382876, A382879. %K A383015 nonn %O A383015 1,1 %A A383015 _Gus Wiseman_, Apr 14 2025