cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386536 Exponent of the highest power of 2 dividing the n-th number that is cubefree but not squarefree.

Original entry on oeis.org

2, 0, 2, 1, 2, 0, 2, 2, 2, 0, 0, 1, 2, 2, 0, 2, 0, 2, 2, 1, 2, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 2, 1, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 1, 2, 0, 2, 2, 0, 2, 1, 2, 1, 2, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 1, 2, 1, 2, 1, 2, 0, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Select[Range[400], Max[FactorInteger[#][[;; , 2]]] == 2 &], 2]
  • PARI
    list(lim) = for(k = 1, lim, if(k > 1 && vecmax(factor(k)[,2]) == 2, print1(valuation(k, 2), ", ")));
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius
    def A386536(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while f(kmin) < kmin: kmin >>= 1		
            kmin = max(kmin,kmax >> 1)
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+sum(mobius(k)*(x//k**2-x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,3)[0]+1,isqrt(x)+1)))
        return ((m:=bisection(f,n,n))-1&~m).bit_length() # Chai Wah Wu, Jul 25 2025

Formula

a(n) = A007814(A067259(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (4/(7*zeta(3)) - 1/(3*zeta(2)))/(1/zeta(3) - 1/zeta(2)) = 1.2176665... .

A386537 Exponent of the highest power of 2 dividing the n-th number whose prime factorization exponents are all powers of 2 (A138302).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    exp2nQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &];
    IntegerExponent[Select[Range[200], exp2nQ], 2]
  • PARI
    isexp2n(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] >> valuation(f[i, 2], 2) > 1, return (0))); 1;}
    list(lim) = for(k = 1, lim, if(isexp2n(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1 + Sum_{k>=0} (2^k + 1)/2^(2^k)) / (1 + Sum_{k>=0} 1/2^(2^k)) - 1 = 0.70550483007968767769... .
Showing 1-2 of 2 results.