cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383035 Inverse Weigh transform of 3^(n-1).

This page as a plain text file.
%I A383035 #13 Apr 13 2025 11:27:36
%S A383035 1,3,6,18,42,113,294,798,2128,5823,15918,43998,122010,340617,954394,
%T A383035 2686728,7588770,21509824,61144062,174289710,498012094,1426229109,
%U A383035 4092816966,11767220068,33890202192,97761550215,282424564744,817018885362,2366546223930,6863002420335
%N A383035 Inverse Weigh transform of 3^(n-1).
%H A383035 Seiichi Manyama, <a href="/A383035/b383035.txt">Table of n, a(n) for n = 1..2000</a>
%H A383035 Christian G. Bower, <a href="https://oeis.org/transforms_pari.txt">PARI programs for transforms</a>, 2007.
%H A383035 N. J. A. Sloane, <a href="/transforms.txt">Maple programs for transforms</a>, 2001-2020.
%F A383035 a(n) = (1/n) * (3^n - 2^n + Sum_{d<n and d|n} (-1)^(n/d) * d * a(d)).
%F A383035 a(n) = A306157(n) - A306156(n).
%F A383035 Product_{k>=1} (1 + x^k)^a(k) = (1 - 2*x)/(1 - 3*x).
%Y A383035 Column k=3 of A383033.
%Y A383035 Cf. A306156, A306157.
%K A383035 nonn
%O A383035 1,2
%A A383035 _Seiichi Manyama_, Apr 13 2025