This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383036 #51 May 28 2025 09:18:26 %S A383036 0,9,1250,352947,172186884,129687123005,139788510734886, %T A383036 204350482177734375,389289535005334947848,937146152681201173795569, %U A383036 2782184294469515486371964010,9986310782535957929474146174619,42632564145606011152267456054687500,213501642487388555901009081409220318757 %N A383036 The determinant of the matrix representing a totally anti-symmetric quasigroup of order 2*n+1. %C A383036 A totally antisymmetric quasigroup of order 2*n+1 is constructed in a way such that M[i][j] != M[j][i] for i!=j with m = 2*n+1, k = 2 and M[j][i] = k*(j-i) mod m for 0 <= j,i < m. %C A383036 For any k != 0 mod m the resulting matrix M has the same determinant for each n. %C A383036 Also the resulting matrix M is circulant and a Latin square. %H A383036 Paolo Xausa, <a href="/A383036/b383036.txt">Table of n, a(n) for n = 0..100</a> %H A383036 H. Michael Damm, <a href="https://doi.org/10.1016/j.disc.2006.05.033">Totally anti-symmetric quasigroups for all orders n not equal to 2 or 6</a>, Discrete Math., 307:6 (2007), 715-729. %H A383036 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quasigroup">Quasigroups</a> %F A383036 a(n) = n*(2*n+1)^(2*n) = A081131(2*n+1). %e A383036 For n = 1, a(1) = 9 because: %e A383036 The resulting totally anti-symetric quasigroup has a matrix: %e A383036 with k = 1: %e A383036 0, 1, 2, %e A383036 2, 0, 1, %e A383036 1, 2, 0 %e A383036 which has a determinant: 9. %e A383036 with k = 2: %e A383036 0, 2, 1, %e A383036 1, 0, 2, %e A383036 2, 1, 0 %e A383036 has also the same determinant 9. %t A383036 A383036[n_] := n*(2*n+1)^(2*n); Array[A383036, 15, 0] (* _Paolo Xausa_, May 28 2025 *) %Y A383036 Cf. A005408, A081131, A375584. %K A383036 nonn,easy %O A383036 0,2 %A A383036 _DarĂo Clavijo_, May 21 2025