cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383039 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000032(n) and its long leg and hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A383039 #11 Apr 22 2025 15:42:05
%S A383039 7,1,17,31,97,241,647,1681,4417,11551,30257,79201,207367,542881,
%T A383039 1421297,3720991,9741697,25504081,66770567,174807601,457652257,
%U A383039 1198149151,3136795217,8212236481,21499914247,56287506241,147362604497,385800307231,1010038317217,2644314644401,6922905616007
%N A383039 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000032(n) and its long leg and hypotenuse are consecutive natural numbers.
%D A383039 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A383039 Miguel-Ángel Pérez García-Ortega, <a href="/A383039/a383039.pdf">El Libro de las Ternas Pitagóricas</a>
%F A383039 a(n) = A382379(n,1) + A382379(n,2).
%F A383039 a(n) = 2*Lucas(n)^2 - 1.
%F A383039 a(n) = 2*A001254(n) - 1.
%e A383039 For n=3, the short leg is A382379(3,1) = 5 and the long leg is A382379(3,2) = 12 so the sum of the legs is then a(2) = 5 + 12 = 17.
%t A383039 a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{2#^2-1}&,a]]
%Y A383039 Cf. A000032, A382379, A382409, A382410, A001254.
%K A383039 nonn,easy
%O A383039 0,1
%A A383039 _Miguel-Ángel Pérez García-Ortega_, Apr 13 2025