A383047 Squarefree d such that x^3+y^3=z^3 has non-trivial solution in Q(sqrt(d)).
2, 5, 6, 11, 14, 15, 17, 23, 26, 29, 33, 35, 38, 41, 42, 43, 47, 51, 53, 58, 59, 62, 65, 69, 71, 74, 77, 78, 82, 83, 85, 86, 87, 89, 93, 95, 101, 105, 106, 107, 109, 110, 113, 114, 119, 122, 123, 131, 134, 137, 141, 142, 143, 146, 149, 155, 158, 159, 161, 167, 170
Offset: 1
Keywords
Examples
For a(1)=2, (18+17*sqrt(2))^3+(18-17*sqrt(2))^3=42^3.
References
- M. Jones and J. Rouse, Solutions of the cubic Fermat equation in quadratic fields, Int. J. Number Theory 9 (2013), no. 6, 1579-1591.
Links
- Seiichi Azuma, Table of n, a(n) for n = 1..160
- M. Jones and J. Rouse, Solutions of the cubic Fermat equation in quadratic fields.
Crossrefs
Cf. A383048.
Programs
-
PARI
for(n=2,500,if(vecmax(factor(n)[,2])>= 2,next); r=ellrank(ellinit([0,0,0,0,-432*n^3])); if(r[2]>0, print1(n, ", "); if(r[1]==0,print("uncertain!"))))
Comments