This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383049 #17 Apr 15 2025 08:25:42 %S A383049 1,1,1,1,2,0,1,4,1,0,1,8,5,-1,0,1,16,19,-3,2,0,1,32,65,-1,4,-6,0,1,64, %T A383049 211,45,-10,-8,24,0,1,128,665,359,-116,48,20,-120,0,1,256,2059,2037, %U A383049 -538,340,-234,-52,720,0,1,512,6305,10079,-1316,984,-1240,1302,72,-5040,0 %N A383049 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k. %H A383049 Christian G. Bower, <a href="https://oeis.org/transforms_pari.txt">PARI programs for transforms</a>, 2007. %H A383049 N. J. A. Sloane, <a href="/transforms.txt">Maple programs for transforms</a>, 2001-2020. %F A383049 A(n,k) = Sum_{j=0..n} (j+1)^k * Stirling1(n,j). %F A383049 E.g.f. of column k: Sum_{j>=0} (j+1)^k * log(1+x)^j / j!. %F A383049 E.g.f. of column k: (1+x) * Sum_{j=0..k} Stirling2(k+1,j+1) * log(1+x)^j. %e A383049 Square array begins: %e A383049 1, 1, 1, 1, 1, 1, 1, ... %e A383049 1, 2, 4, 8, 16, 32, 64, ... %e A383049 0, 1, 5, 19, 65, 211, 665, ... %e A383049 0, -1, -3, -1, 45, 359, 2037, ... %e A383049 0, 2, 4, -10, -116, -538, -1316, ... %e A383049 0, -6, -8, 48, 340, 984, -1148, ... %e A383049 0, 24, 20, -234, -1240, -1866, 16400, ... %o A383049 (PARI) a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1)); %Y A383049 Columns k=0..6 give A019590(n+1), A302190 (for n > 0), A222627, A222636, A222748, A223023, A383050. %Y A383049 Main diagonal gives A383051. %Y A383049 Cf. A362924, A362925. %K A383049 sign,tabl %O A383049 0,5 %A A383049 _Seiichi Manyama_, Apr 14 2025