This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383080 #24 Apr 17 2025 09:37:06 %S A383080 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,90, %T A383080 92,96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,144,147, %U A383080 148,150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189,198 %N A383080 Numbers k such that sopf(k) does not divide evenly sopfr(k). %C A383080 First differs from A059404 and A323055 at n = 59. %C A383080 a(n) has a square factor, A008683(a(n)) = 0. %C A383080 If p and q are distinct primes, p*q^k is in the sequence iff p + q does not divide k - 1. - _Robert Israel_, Apr 16 2025 %e A383080 12 is a term because sopf(12)=5 does not evenly divide sopfr(12)=7. %e A383080 18 is a term because sopf(18)=5 does not evenly divide sopfr(18)=8. %e A383080 20 is a term because sopf(20)=7 does not evenly divide sopfr(20)=9. %p A383080 filter:= proc(n) local F,t; %p A383080 F:= ifactors(n)[2]; %p A383080 add(t[1]*t[2],t=F) mod add(t[1],t=F) <> 0 %p A383080 end proc: %p A383080 select(filter, [$2..300]); # _Robert Israel_, Apr 16 2025 %t A383080 q[k_] := Module[{f = FactorInteger[k]}, !Divisible[Plus @@ Times @@@ f, Plus @@ f[[;; , 1]]]]; Select[Range[200], q] (* _Amiram Eldar_, Apr 16 2025 *) %o A383080 (Sage) def spf(k): %o A383080 fl = list(factor(k)) %o A383080 sr = sum(p * e for p, e in fl) %o A383080 sd = sum(p for p, _ in fl) %o A383080 return sd, sr %o A383080 def output(limit=198): %o A383080 results = [] %o A383080 for k in range(2, limit + 1): %o A383080 sd, sr = spf(k) %o A383080 if 0 < sd and sr % sd != 0: %o A383080 results.append(k) %o A383080 return results %o A383080 print(output()) %o A383080 (PARI) isok(k) = if (k>1, my(f=factor(k)); sum(j=1, #f~, f[j,1]*f[j,2]) % sum(j=1, #f~, f[j,1])); \\ _Michel Marcus_, Apr 16 2025 %Y A383080 Cf. A001414, A008472, A008683. %Y A383080 Cf. A059404, A323055. %K A383080 nonn %O A383080 1,1 %A A383080 _Torlach Rush_, Apr 15 2025