This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383088 #9 Apr 18 2025 09:57:41 %S A383088 6,10,14,15,18,20,21,22,24,26,28,30,33,34,35,36,38,39,42,44,45,46,48, %T A383088 50,51,52,54,55,56,57,58,60,62,65,66,68,69,70,72,74,75,76,77,78,80,82, %U A383088 84,85,86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,105 %N A383088 Numbers whose multiset of prime indices does not have all equal run-sums. %C A383088 First differs from A381871 in having 36. %C A383088 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A383088 The prime indices of 36 are {1,1,2,2}, with run-sums (2,4), so 36 is in the sequence, even though we have the multiset partition {{1,1},{2},{2}} with equal sums. %e A383088 The terms together with their prime indices begin: %e A383088 6: {1,2} %e A383088 10: {1,3} %e A383088 14: {1,4} %e A383088 15: {2,3} %e A383088 18: {1,2,2} %e A383088 20: {1,1,3} %e A383088 21: {2,4} %e A383088 22: {1,5} %e A383088 24: {1,1,1,2} %e A383088 26: {1,6} %e A383088 28: {1,1,4} %e A383088 30: {1,2,3} %e A383088 33: {2,5} %e A383088 34: {1,7} %e A383088 35: {3,4} %e A383088 36: {1,1,2,2} %e A383088 38: {1,8} %e A383088 39: {2,6} %e A383088 42: {1,2,4} %e A383088 44: {1,1,5} %e A383088 45: {2,2,3} %e A383088 46: {1,9} %t A383088 Select[Range[100], !SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&] %Y A383088 For run-lengths instead of sums we have A059404, distinct A130092. %Y A383088 The complement is A353833, counted by A304442. %Y A383088 For distinct instead of equal run-sums we have A353839. %Y A383088 Partitions of this type are counted by A382076. %Y A383088 Counting and ranking partitions by run-lengths and run-sums: %Y A383088 - constant: A047966 (ranks A072774), sums A304442 (ranks A353833) %Y A383088 - distinct: A098859 (ranks A130091), sums A353837 (ranks A353838) %Y A383088 - weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875) %Y A383088 - weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861) %Y A383088 - strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862) %Y A383088 - strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864) %Y A383088 A001222 counts prime factors, distinct A001221. %Y A383088 A056239 adds up prime indices, row sums of A112798. %Y A383088 A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518. %Y A383088 A353851 counts compositions with a common run-sum, ranks A353848. %Y A383088 A353862 gives the greatest run-sum of prime indices, least A353931. %Y A383088 A382877 counts permutations of prime indices with equal run-sums, zeros A383100. %Y A383088 A383098 counts partitions with a permutation having all equal run-sums, ranks A383110. %Y A383088 Cf. A000720, A006171, A300273, A353861, A353932, A354584, A383014, A383015, A383095, A383097, A383099. %K A383088 nonn %O A383088 1,1 %A A383088 _Gus Wiseman_, Apr 17 2025