cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths.

This page as a plain text file.
%I A383089 #9 Apr 19 2025 19:34:45
%S A383089 6,10,14,15,21,22,26,30,33,34,35,36,38,39,42,46,51,55,57,58,60,62,65,
%T A383089 66,69,70,74,77,78,82,84,85,86,87,90,91,93,94,95,100,102,105,106,110,
%U A383089 111,114,115,118,119,120,122,123,126,129,130,132,133,134,138,140
%N A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths.
%C A383089 First differs from A362606 (complement A359178 with 1) in having 180 and lacking 240.
%C A383089 First differs from A130092 (complement A130091) in having 360 and lacking 240.
%C A383089 First differs from A351295 (complement A351294) in having 216 and lacking 240.
%C A383089 Includes all squarefree numbers A005117 except the primes A000040.
%C A383089 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
%F A383089 The complement is A383091 = A382879 \/ A383112, counted by A382915 + A383094.
%e A383089 The prime indices of 36 are {1,1,2,2}, and we have 4 permutations each having all equal run-lengths: (1,1,2,2), (1,2,1,2), (2,2,1,1), (2,1,2,1), so 36 is in the sequence.
%e A383089 The terms together with their prime indices begin:
%e A383089     6: {1,2}
%e A383089    10: {1,3}
%e A383089    14: {1,4}
%e A383089    15: {2,3}
%e A383089    21: {2,4}
%e A383089    22: {1,5}
%e A383089    26: {1,6}
%e A383089    30: {1,2,3}
%e A383089    33: {2,5}
%e A383089    34: {1,7}
%e A383089    35: {3,4}
%e A383089    36: {1,1,2,2}
%e A383089    38: {1,8}
%e A383089    39: {2,6}
%e A383089    42: {1,2,4}
%e A383089    46: {1,9}
%e A383089    51: {2,7}
%e A383089    55: {3,5}
%e A383089    57: {2,8}
%e A383089    58: {1,10}
%e A383089    60: {1,1,2,3}
%t A383089 Select[Range[100],Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]>1&]
%Y A383089 Positions of terms > 1 in A382857 (distinct A382771), zeros A382879, ones A383112.
%Y A383089 For run-sums instead of lengths we have A383015, counted by A383097.
%Y A383089 Partitions of this type are counted by A383090.
%Y A383089 The complement is A383091, counted by A383092, just zero A382915, just one A383094.
%Y A383089 For distinct instead of equal run-sums we have A383113.
%Y A383089 A044813 lists numbers whose binary expansion has distinct run-lengths.
%Y A383089 A047966 counts partitions with equal run-lengths, compositions A329738.
%Y A383089 A055396 gives least prime index, greatest A061395.
%Y A383089 A056239 adds up prime indices, row sums of A112798.
%Y A383089 A098859 counts partitions with distinct run-lengths, ranks A130091.
%Y A383089 A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
%Y A383089 A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
%Y A383089 A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.
%Y A383089 Cf. A000720, A000961, A001221, A001222, A048767, A353744, A353833, A381541, A381871, A382877, A383014, A383100.
%K A383089 nonn
%O A383089 1,1
%A A383089 _Gus Wiseman_, Apr 18 2025