This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383089 #9 Apr 19 2025 19:34:45 %S A383089 6,10,14,15,21,22,26,30,33,34,35,36,38,39,42,46,51,55,57,58,60,62,65, %T A383089 66,69,70,74,77,78,82,84,85,86,87,90,91,93,94,95,100,102,105,106,110, %U A383089 111,114,115,118,119,120,122,123,126,129,130,132,133,134,138,140 %N A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths. %C A383089 First differs from A362606 (complement A359178 with 1) in having 180 and lacking 240. %C A383089 First differs from A130092 (complement A130091) in having 360 and lacking 240. %C A383089 First differs from A351295 (complement A351294) in having 216 and lacking 240. %C A383089 Includes all squarefree numbers A005117 except the primes A000040. %C A383089 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A383089 The complement is A383091 = A382879 \/ A383112, counted by A382915 + A383094. %e A383089 The prime indices of 36 are {1,1,2,2}, and we have 4 permutations each having all equal run-lengths: (1,1,2,2), (1,2,1,2), (2,2,1,1), (2,1,2,1), so 36 is in the sequence. %e A383089 The terms together with their prime indices begin: %e A383089 6: {1,2} %e A383089 10: {1,3} %e A383089 14: {1,4} %e A383089 15: {2,3} %e A383089 21: {2,4} %e A383089 22: {1,5} %e A383089 26: {1,6} %e A383089 30: {1,2,3} %e A383089 33: {2,5} %e A383089 34: {1,7} %e A383089 35: {3,4} %e A383089 36: {1,1,2,2} %e A383089 38: {1,8} %e A383089 39: {2,6} %e A383089 42: {1,2,4} %e A383089 46: {1,9} %e A383089 51: {2,7} %e A383089 55: {3,5} %e A383089 57: {2,8} %e A383089 58: {1,10} %e A383089 60: {1,1,2,3} %t A383089 Select[Range[100],Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]>1&] %Y A383089 Positions of terms > 1 in A382857 (distinct A382771), zeros A382879, ones A383112. %Y A383089 For run-sums instead of lengths we have A383015, counted by A383097. %Y A383089 Partitions of this type are counted by A383090. %Y A383089 The complement is A383091, counted by A383092, just zero A382915, just one A383094. %Y A383089 For distinct instead of equal run-sums we have A383113. %Y A383089 A044813 lists numbers whose binary expansion has distinct run-lengths. %Y A383089 A047966 counts partitions with equal run-lengths, compositions A329738. %Y A383089 A055396 gives least prime index, greatest A061395. %Y A383089 A056239 adds up prime indices, row sums of A112798. %Y A383089 A098859 counts partitions with distinct run-lengths, ranks A130091. %Y A383089 A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432. %Y A383089 A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291. %Y A383089 A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433. %Y A383089 Cf. A000720, A000961, A001221, A001222, A048767, A353744, A353833, A381541, A381871, A382877, A383014, A383100. %K A383089 nonn %O A383089 1,1 %A A383089 _Gus Wiseman_, Apr 18 2025