A383090 Number of integer partitions of n having more than one permutation with all equal run-lengths.
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 20, 28, 43, 55, 77, 107, 141, 183, 244, 312, 411, 521, 664, 837, 1069, 1328, 1667, 2069, 2578, 3166, 3929, 4791, 5895, 7168, 8749, 10594, 12883, 15500, 18741, 22493, 27069, 32334, 38760, 46133, 55065, 65367, 77686, 91905, 108927, 128431, 151674
Offset: 0
Keywords
Examples
The partition (3322221) has 3 permutations with all equal run-lengths: (2323212), (2321232), (2123232), so is counted under a(15). The partition (3322111111) has 2 permutations with all equal run-lengths: (1133112211), (1122113311), so is counted under a(16). The a(3) = 1 through a(9) = 14 partitions: (21) (31) (32) (42) (43) (53) (54) (41) (51) (52) (62) (63) (321) (61) (71) (72) (2211) (421) (431) (81) (3211) (521) (432) (3221) (531) (3311) (621) (4211) (3321) (32111) (4221) (4311) (5211) (32211) (42111) (222111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]>1&]],{n,0,15}]
Extensions
More terms from Bert Dobbelaere, Apr 26 2025