A383093 Number of integer partitions of n that can be partitioned into constant blocks with a common sum.
1, 1, 2, 2, 4, 2, 7, 2, 9, 5, 9, 2, 23, 2, 11, 10, 24, 2, 33, 2, 36, 12, 15, 2, 87, 7, 17, 17, 53, 2, 96, 2, 79, 16, 21, 14, 196, 2, 23, 18, 154, 2, 166, 2, 99, 54, 27, 2, 431, 9, 85, 22, 128, 2, 303, 18, 261, 24, 33, 2, 771, 2, 35, 73, 331, 20, 422, 2, 198, 28, 216, 2, 1369
Offset: 0
Keywords
Examples
The partition (4,4,2,2,2,2,1,1,1,1,1,1,1,1) has two partitions into constant blocks with a common sum: {{4,4},{2,2,2,2},{1,1,1,1,1,1,1,1}} and {{4},{4},{2,2},{2,2},{1,1,1,1},{1,1,1,1}}, so is counted under a(24). The a(1) = 1 through a(8) = 9 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (11111) (33) (1111111) (44) (211) (222) (422) (1111) (2211) (2222) (3111) (22211) (21111) (41111) (111111) (221111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}]; Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]>0&]],{n,0,30}]
Formula
Extensions
More terms from Jakub Buczak, May 03 2025