This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383099 #7 Apr 22 2025 08:04:24 %S A383099 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,36,37,41,43,47,48, %T A383099 49,53,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125, %U A383099 127,128,131,137,139,149,151,157,163,167,169,173,179,181,191,193 %N A383099 Numbers whose prime indices have exactly one permutation with all equal run-sums. %C A383099 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A383099 The complement is A383015 \/ A383100, for run-lengths A382879 \/ A383089. %e A383099 The terms together with their prime indices begin: %e A383099 1: {} %e A383099 2: {1} %e A383099 3: {2} %e A383099 4: {1,1} %e A383099 5: {3} %e A383099 7: {4} %e A383099 8: {1,1,1} %e A383099 9: {2,2} %e A383099 11: {5} %e A383099 13: {6} %e A383099 16: {1,1,1,1} %e A383099 17: {7} %e A383099 19: {8} %e A383099 23: {9} %e A383099 25: {3,3} %e A383099 27: {2,2,2} %e A383099 29: {10} %e A383099 31: {11} %e A383099 32: {1,1,1,1,1} %e A383099 36: {1,1,2,2} %e A383099 37: {12} %e A383099 41: {13} %t A383099 Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==1&] %Y A383099 For distinct instead of equal run-sums we have A000961, counted by A000005. %Y A383099 These are the positions of 1 in A382877. %Y A383099 For more than one choice we have A383015. %Y A383099 Partitions of this type are counted by A383095. %Y A383099 For no choices we have A383100, counted by A383096. %Y A383099 For at least one choice we have A383110, counted by A383098, see A383013. %Y A383099 For run-lengths instead of sums we have A383112 = positions of 1 in A382857. %Y A383099 A056239 adds up prime indices, row sums of A112798. %Y A383099 A304442 counts partitions with equal run-sums, ranks A353833. %Y A383099 A353851 counts compositions with equal run-sums, ranks A353848. %Y A383099 Cf. A047966, A072774, A130091, A242031, A304686, A304678, A334965. %Y A383099 Cf. A000720, A001221, A001222, A351294, A353832, A353838, A353932, A354584, A382876, A383091. %K A383099 nonn %O A383099 1,2 %A A383099 _Gus Wiseman_, Apr 20 2025