This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383100 #6 Apr 22 2025 08:05:54 %S A383100 6,10,14,15,18,20,21,22,24,26,28,30,33,34,35,38,39,42,44,45,46,50,51, %T A383100 52,54,55,56,57,58,60,62,65,66,68,69,70,72,74,75,76,77,78,80,82,84,85, %U A383100 86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,105,106,108 %N A383100 Numbers whose prime indices have no permutation with all equal run-sums. %C A383100 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A383100 The prime indices of 18 are {1,2,2}, with permutations (1,2,2), (2,1,2), (2,2,1), with run sums (1,4), (2,1,2), (4,1) respectively, so 18 is in the sequence. %e A383100 The terms together with their prime indices begin: %e A383100 6: {1,2} %e A383100 10: {1,3} %e A383100 14: {1,4} %e A383100 15: {2,3} %e A383100 18: {1,2,2} %e A383100 20: {1,1,3} %e A383100 21: {2,4} %e A383100 22: {1,5} %e A383100 24: {1,1,1,2} %e A383100 26: {1,6} %e A383100 28: {1,1,4} %e A383100 30: {1,2,3} %e A383100 33: {2,5} %e A383100 34: {1,7} %e A383100 35: {3,4} %e A383100 38: {1,8} %e A383100 39: {2,6} %e A383100 42: {1,2,4} %e A383100 44: {1,1,5} %e A383100 45: {2,2,3} %e A383100 46: {1,9} %e A383100 50: {1,3,3} %t A383100 Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==0&] %Y A383100 For distinct instead of equal run-sums we appear to have A381636, counted by A381717. %Y A383100 For run-lengths instead of sums we have A382879, counted by complement of A383013. %Y A383100 These are the positions of 0 in A382877. %Y A383100 For more than one choice we have A383015. %Y A383100 The complement is A383110, counted by A383098. %Y A383100 Partitions of this type are counted by A383096. %Y A383100 For a unique choice we have A383099, counted by A383095. %Y A383100 A056239 adds up prime indices, row sums of A112798. %Y A383100 A304442 counts partitions with equal run-sums, ranks A353833. %Y A383100 A353851 counts compositions with equal run-sums, ranks A353848. %Y A383100 Cf. A047966, A072774, A130091, A242031, A304686, A304678, A334965. %Y A383100 Cf. A351294, A351295, A353832, A353837, A353838, A354584, A381871, A382857, A382876, A383094, A383097. %K A383100 nonn %O A383100 1,1 %A A383100 _Gus Wiseman_, Apr 20 2025