cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383104 Inverse Möbius transform of A382883.

This page as a plain text file.
%I A383104 #10 Apr 29 2025 16:52:21
%S A383104 1,0,0,1,0,0,0,2,1,0,0,1,0,0,0,2,0,1,0,1,0,0,0,2,1,0,2,1,0,0,0,3,0,0,
%T A383104 0,1,0,0,0,2,0,0,0,1,1,0,0,2,1,1,0,1,0,2,0,2,0,0,0,1,0,0,1,2,0,0,0,1,
%U A383104 0,0,0,2,0,0,1,1,0,0,0,2,2,0,0,1,0,0
%N A383104 Inverse Möbius transform of A382883.
%F A383104 a(n) = Sum_{d|n} A382883(d).
%p A383104 # Seen as a special case of a transformation:
%p A383104 A382883Transform := (b, len) -> local n, d; seq(add(A382883(n/d)*b(d), d in numtheory:-divisors(n)), n = 1..len): A382883Transform(n -> 1, 99);
%t A383104 V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := DivisorSum[n, f[#] &]; Array[a, 100] (* _Amiram Eldar_, Apr 29 2025 *)
%o A383104 (SageMath)
%o A383104 def a(n): return sum(A382883(n/d) for d in divisors(n))
%o A383104 print([a(n) for n in range(1, 90)])
%o A383104 # More general:
%o A383104 def A382883Transform(n: int, b: Callable[[int], int]) -> int:
%o A383104     return sum(A382883(n/d)*b(d) for d in divisors(n))
%o A383104 def a(n) -> int: return A382883Transform(n, lambda x: 1)
%Y A383104 Cf. A382883, A366988.
%K A383104 nonn
%O A383104 1,8
%A A383104 _Peter Luschny_, Apr 16 2025