This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383110 #6 Apr 22 2025 09:10:03 %S A383110 1,2,3,4,5,7,8,9,11,12,13,16,17,19,23,25,27,29,31,32,36,37,40,41,43, %T A383110 47,48,49,53,59,61,63,64,67,71,73,79,81,83,89,97,101,103,107,109,112, %U A383110 113,121,125,127,128,131,137,139,144,149,151,157,163,167,169,173 %N A383110 Numbers whose prime indices have a permutation with all equal run-sums. %C A383110 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A383110 Equals A383015 \/ A383099, counted by A353851 \/ A383095. %e A383110 The prime indices of 144 are {1,1,1,1,2,2}, with permutations with equal run sums (1,1,1,1,2,2), (1,1,2,1,1,2), (2,1,1,2,1,1), (2,2,1,1,1,1), so 144 is in the sequence. %e A383110 The terms together with their prime indices begin: %e A383110 1: {} %e A383110 2: {1} %e A383110 3: {2} %e A383110 4: {1,1} %e A383110 5: {3} %e A383110 7: {4} %e A383110 8: {1,1,1} %e A383110 9: {2,2} %e A383110 11: {5} %e A383110 12: {1,1,2} %e A383110 13: {6} %e A383110 16: {1,1,1,1} %e A383110 17: {7} %e A383110 19: {8} %e A383110 23: {9} %e A383110 25: {3,3} %e A383110 27: {2,2,2} %e A383110 29: {10} %e A383110 31: {11} %e A383110 32: {1,1,1,1,1} %e A383110 36: {1,1,2,2} %e A383110 37: {12} %t A383110 Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]>0&] %Y A383110 For distinct run-sums we appear to have complement of A381636 (counted by A381717). %Y A383110 These are the positions of positive terms in A382877. %Y A383110 For run-lengths instead of sums we have complement of A382879, counted by A383013. %Y A383110 For more than one choice we have A383015. %Y A383110 Partitions of this type are counted by A383098. %Y A383110 For a unique choice we have A383099, counted by A383095. %Y A383110 The complement is A383100, counted by A383096. %Y A383110 A056239 adds up prime indices, row sums of A112798. %Y A383110 A304442 counts partitions with equal run-sums, ranks A353833. %Y A383110 A353851 counts compositions with equal run-sums, ranks A353848. %Y A383110 Cf. A047966, A072774, A130091, A242031, A304686, A304678, A334965. %Y A383110 Cf. A351295, A353832, A353837, A353838, A354584, A381871, A382857, A382876, A383097. %K A383110 nonn %O A383110 1,2 %A A383110 _Gus Wiseman_, Apr 20 2025