This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383111 #9 May 04 2025 06:35:13 %S A383111 0,0,0,0,1,3,3,8,9,13,17,26,27,43,51,61,78,103,115,153,174,213,255, %T A383111 316,354,442,508,610,701,848,950,1153,1303,1539,1750,2075,2318,2738, %U A383111 3081 %N A383111 Number of integer partitions of n having more than one permutation with all distinct run-lengths. %e A383111 The partition (2,1,1) has two permutations with all distinct run-lengths: (1,1,2), (2,1,1), so it is counted under a(4). %e A383111 The a(4) = 1 through a(9) = 13 partitions: %e A383111 (211) (221) (411) (322) (332) (441) %e A383111 (311) (3111) (331) (422) (522) %e A383111 (2111) (21111) (511) (611) (711) %e A383111 (2221) (5111) (3222) %e A383111 (4111) (22211) (6111) %e A383111 (22111) (41111) (22221) %e A383111 (31111) (221111) (33111) %e A383111 (211111) (311111) (51111) %e A383111 (2111111) (222111) %e A383111 (411111) %e A383111 (2211111) %e A383111 (3111111) %e A383111 (21111111) %t A383111 Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], UnsameQ@@Length/@Split[#]&]]>1&]],{n,0,15}] %Y A383111 For a unique choice we have A000005, ranks A000961. %Y A383111 For at least one choice we have A239455, ranks A351294, conjugate A381432. %Y A383111 For no choices we have A351293, ranks A351295, conjugate A381433. %Y A383111 The complement is A351293 + A000005, ranks too dense. %Y A383111 For equal instead of distinct run-lengths we have A383090, ranks A383089. %Y A383111 These partitions are ranked by A383113 = positions of terms > 1 in A382771. %Y A383111 Cf. A047966, A098859, A130091, A353837, A100471, A100881, A100882, A100883 %Y A383111 A000041 counts integer partitions, strict A000009. %Y A383111 A008284 counts partitions by length, strict A008289. %Y A383111 A329738 counts compositions with equal run-lengths, ranks A353744. %Y A383111 Cf. A047993, A329739, A381541, A381636, A381717, A382857, A382915, A383013, A383092, A383094, A383097. %K A383111 nonn,hard,more %O A383111 0,6 %A A383111 _Gus Wiseman_, Apr 20 2025 %E A383111 a(21)-a(38) from _Jakub Buczak_, May 04 2025