This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383112 #7 Apr 21 2025 13:25:01 %S A383112 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,25,27,28,29,31,32,37,41, %T A383112 43,44,45,47,49,50,52,53,59,61,63,64,67,68,71,72,73,75,76,79,81,83,89, %U A383112 92,97,98,99,101,103,107,108,109,113,116,117,121,124,125,127 %N A383112 Numbers whose multiset of prime indices has exactly one permutation with all equal run-lengths. %C A383112 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %C A383112 Includes all prime powers A000961. %C A383112 Are there any terms x such that A001221(x) > 2? %e A383112 The prime indices of 144 are {1,1,1,1,2,2}, of which the only permutation with all equal run-lengths is (1,1,2,2,1,1), so 144 is in the sequence. %e A383112 The terms together with their prime indices begin: %e A383112 1: {} %e A383112 2: {1} %e A383112 3: {2} %e A383112 4: {1,1} %e A383112 5: {3} %e A383112 7: {4} %e A383112 8: {1,1,1} %e A383112 9: {2,2} %e A383112 11: {5} %e A383112 12: {1,1,2} %e A383112 13: {6} %e A383112 16: {1,1,1,1} %e A383112 17: {7} %e A383112 18: {1,2,2} %e A383112 19: {8} %e A383112 20: {1,1,3} %e A383112 23: {9} %e A383112 25: {3,3} %e A383112 27: {2,2,2} %e A383112 28: {1,1,4} %e A383112 29: {10} %e A383112 31: {11} %e A383112 32: {1,1,1,1,1} %t A383112 Select[Range[100], Length[Select[Permutations[Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]==1&] %Y A383112 These are the positions of 1 in A382857, distinct A382771. %Y A383112 The complement is A382879 \/ A383089, counted by A382915 + A383090. %Y A383112 For at most one permutation we have A383091, counted by A383092. %Y A383112 Partitions of this type are counted by A383094. %Y A383112 For run-sums instead of lengths we have A383099, counted by A383095. %Y A383112 A047966 counts partitions with equal run-lengths, ranks A072774. %Y A383112 A056239 adds up prime indices, row sums of A112798. %Y A383112 A098859 counts partitions with distinct run-lengths, ranks A130091. %Y A383112 A329738 counts compositions with equal run-lengths, ranks A353744. %Y A383112 A329739 counts compositions with distinct run-lengths, ranks A351596. %Y A383112 Cf. A000961, A001221, A001222, A048767, A351294, A351295, A353833, A381434, A381540, A382877, A383100. %K A383112 nonn %O A383112 1,2 %A A383112 _Gus Wiseman_, Apr 18 2025