cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383113 Numbers whose prime indices have more than one permutation with all distinct run-lengths.

This page as a plain text file.
%I A383113 #5 Apr 22 2025 09:09:57
%S A383113 12,18,20,24,28,40,44,45,48,50,52,54,56,63,68,72,75,76,80,88,92,96,98,
%T A383113 99,104,108,112,116,117,124,135,136,144,147,148,152,153,160,162,164,
%U A383113 171,172,175,176,184,188,189,192,200,207,208,212,216,224,232,236,242
%N A383113 Numbers whose prime indices have more than one permutation with all distinct run-lengths.
%C A383113 First differs from A177425, A182854, A367589 in having 216.
%C A383113 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A383113 The complement is A000961 \/ A351293, counted by A000005 + A351295.
%e A383113 The prime indices of 360 are {1,1,1,2,2,3}, with six permutations with all distinct run-lengths:
%e A383113   (1,1,1,2,2,3)
%e A383113   (1,1,1,3,2,2)
%e A383113   (2,2,1,1,1,3)
%e A383113   (2,2,3,1,1,1)
%e A383113   (3,1,1,1,2,2)
%e A383113   (3,2,2,1,1,1)
%e A383113 so 360 is in the sequence.
%e A383113 The terms together with their prime indices begin:
%e A383113   12: {1,1,2}
%e A383113   18: {1,2,2}
%e A383113   20: {1,1,3}
%e A383113   24: {1,1,1,2}
%e A383113   28: {1,1,4}
%e A383113   40: {1,1,1,3}
%e A383113   44: {1,1,5}
%e A383113   45: {2,2,3}
%e A383113   48: {1,1,1,1,2}
%e A383113   50: {1,3,3}
%e A383113   52: {1,1,6}
%e A383113   54: {1,2,2,2}
%e A383113   56: {1,1,1,4}
%e A383113   63: {2,2,4}
%e A383113   68: {1,1,7}
%e A383113   72: {1,1,1,2,2}
%e A383113   75: {2,3,3}
%e A383113   76: {1,1,8}
%e A383113   80: {1,1,1,1,3}
%t A383113 Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], UnsameQ@@Length/@Split[#]&]]>1&]
%Y A383113 For exactly one permutation we have A000961, counted by A000005.
%Y A383113 For no choices we have A351293, counted by A351295, conjugate A381433, equal A382879.
%Y A383113 For at least one choice we have A351294, conjugate A381432, counted by A239455.
%Y A383113 These are positions of terms > 1 in A382771, firsts A382772, equal A382878.
%Y A383113 For equal run-lengths we have A383089, positions of terms > 1 in A382857.
%Y A383113 Partitions of this type are counted by A383111.
%Y A383113 A044813 lists numbers whose binary expansion has distinct run-lengths.
%Y A383113 A056239 adds up prime indices, row sums of A112798.
%Y A383113 A098859 counts partitions with distinct run-lengths (ordered A242882), ranks A130091.
%Y A383113 A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
%Y A383113 Cf. A000720, A001221, A001222, A047966, A048767, A351013, A351202, A381435, A382876, A383090, A383091, A383092, A383112.
%K A383113 nonn
%O A383113 1,1
%A A383113 _Gus Wiseman_, Apr 20 2025