This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383113 #5 Apr 22 2025 09:09:57 %S A383113 12,18,20,24,28,40,44,45,48,50,52,54,56,63,68,72,75,76,80,88,92,96,98, %T A383113 99,104,108,112,116,117,124,135,136,144,147,148,152,153,160,162,164, %U A383113 171,172,175,176,184,188,189,192,200,207,208,212,216,224,232,236,242 %N A383113 Numbers whose prime indices have more than one permutation with all distinct run-lengths. %C A383113 First differs from A177425, A182854, A367589 in having 216. %C A383113 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A383113 The complement is A000961 \/ A351293, counted by A000005 + A351295. %e A383113 The prime indices of 360 are {1,1,1,2,2,3}, with six permutations with all distinct run-lengths: %e A383113 (1,1,1,2,2,3) %e A383113 (1,1,1,3,2,2) %e A383113 (2,2,1,1,1,3) %e A383113 (2,2,3,1,1,1) %e A383113 (3,1,1,1,2,2) %e A383113 (3,2,2,1,1,1) %e A383113 so 360 is in the sequence. %e A383113 The terms together with their prime indices begin: %e A383113 12: {1,1,2} %e A383113 18: {1,2,2} %e A383113 20: {1,1,3} %e A383113 24: {1,1,1,2} %e A383113 28: {1,1,4} %e A383113 40: {1,1,1,3} %e A383113 44: {1,1,5} %e A383113 45: {2,2,3} %e A383113 48: {1,1,1,1,2} %e A383113 50: {1,3,3} %e A383113 52: {1,1,6} %e A383113 54: {1,2,2,2} %e A383113 56: {1,1,1,4} %e A383113 63: {2,2,4} %e A383113 68: {1,1,7} %e A383113 72: {1,1,1,2,2} %e A383113 75: {2,3,3} %e A383113 76: {1,1,8} %e A383113 80: {1,1,1,1,3} %t A383113 Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], UnsameQ@@Length/@Split[#]&]]>1&] %Y A383113 For exactly one permutation we have A000961, counted by A000005. %Y A383113 For no choices we have A351293, counted by A351295, conjugate A381433, equal A382879. %Y A383113 For at least one choice we have A351294, conjugate A381432, counted by A239455. %Y A383113 These are positions of terms > 1 in A382771, firsts A382772, equal A382878. %Y A383113 For equal run-lengths we have A383089, positions of terms > 1 in A382857. %Y A383113 Partitions of this type are counted by A383111. %Y A383113 A044813 lists numbers whose binary expansion has distinct run-lengths. %Y A383113 A056239 adds up prime indices, row sums of A112798. %Y A383113 A098859 counts partitions with distinct run-lengths (ordered A242882), ranks A130091. %Y A383113 A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291. %Y A383113 Cf. A000720, A001221, A001222, A047966, A048767, A351013, A351202, A381435, A382876, A383090, A383091, A383092, A383112. %K A383113 nonn %O A383113 1,1 %A A383113 _Gus Wiseman_, Apr 20 2025