cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383126 Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.

This page as a plain text file.
%I A383126 #21 Jul 06 2025 18:23:15
%S A383126 1,28692,23503,44410,3213,124528,62219,32670,65673,62052,120199,55874,
%T A383126 132109,41184,37899,56006,34745,110924,4263,16210,11917,15688,134147,
%U A383126 76038,16585,117292,45743,108874,100493,31184,51475,106094,126049,86252,63143,23402
%N A383126 Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.
%C A383126 Periodic with period 134456.
%C A383126 Described in Numerical Recipes as a "quick and dirty" generator.
%D A383126 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
%H A383126 Sean A. Irvine, <a href="/A383126/b383126.txt">Table of n, a(n) for n = 1..10000</a>
%H A383126 W. E. Sharp and Carter Bays, <a href="https://doi.org/10.1016/0098-3004(92)90060-5">A review of portable random number generators</a>, Computers and Geosciences, 18, 1 (1982), 79-87.
%H A383126 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%H A383126 <a href="/index/Rec#order_134456">Index entries for linear recurrences with constant coefficients</a>, order 134456.
%F A383126 a(n) = (281*a(n-1) + 28411) mod 134456.
%p A383126 a:= proc(n) option remember; `if`(n<2, n,
%p A383126       irem(281*a(n-1)+28411, 134456))
%p A383126     end:
%p A383126 seq(a(n), n=1..45);  # after _Alois P. Heinz_
%t A383126 NestList[Mod[281*# + 28411, 134456] &, 1, 50] (* _Paolo Xausa_, Jun 18 2025 *)
%Y A383126 Cf. A383127, A384431, A385002, A385003, A385037, A385039, A385078.
%K A383126 nonn,look,easy
%O A383126 1,2
%A A383126 _Sean A. Irvine_, Jun 17 2025