cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383127 Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.

This page as a plain text file.
%I A383127 #17 Jul 06 2025 18:23:47
%S A383127 1,29778,115439,39976,106509,28910,77467,93924,108377,131914,58119,
%T A383127 46688,82789,65190,96563,89500,41265,90818,31519,52440,2237,68254,
%U A383127 24843,83540,79177,24570,27575,83728,117717,87062,101347,90444,94817,11506,8847,23624,113581
%N A383127 Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.
%C A383127 Periodic with period 139968.
%C A383127 Described in Numerical Recipes as a "quick and dirty" generator.
%D A383127 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
%H A383127 Sean A. Irvine, <a href="/A383127/b383127.txt">Table of n, a(n) for n = 1..10000</a>
%H A383127 W. E. Sharp and Carter Bays, <a href="https://doi.org/10.1016/0098-3004(92)90060-5">A review of portable random number generators</a>, Computers and Geosciences, 18, 1 (1982), 79-87.
%H A383127 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%H A383127 <a href="/index/Rec#order_139968">Index entries for linear recurrences with constant coefficients</a>, order 139968.
%F A383127 a(n) = (205*a(n-1) + 29573) mod 139968.
%p A383127 a:= proc(n) option remember; `if`(n<2, n,
%p A383127       irem(205*a(n-1)+29573, 139968))
%p A383127     end:
%p A383127 seq(a(n), n=1..45);  # after _Alois P. Heinz_
%t A383127 NestList[Mod[205*# + 29573, 139968] &, 1, 50] (* _Paolo Xausa_, Jun 18 2025 *)
%Y A383127 Cf. A383126, A384431, A385002, A385003, A385037, A385039, A385078.
%K A383127 nonn,easy
%O A383127 1,2
%A A383127 _Sean A. Irvine_, Jun 17 2025