cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm.

This page as a plain text file.
%I A383130 #25 Jun 25 2025 00:36:58
%S A383130 1,1,1,5,17,133,1927,13582711,92612482895,10402118970990527,
%T A383130 59203666396198716260449,83631044830029201279016528831,
%U A383130 1149522186344339904123210420373026673,458029700061597358458976211208014885543904637441,203695852839150317577316770934832249000714992664672874100151
%N A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm.
%C A383130 The continued fraction only produces values for the principal branch of the product logarithm.
%H A383130 Cristina B. Corcino, Roberto B. Corcino, and István Mező, <a href="https://doi.org/10.1007/s00010-018-0559-2">Continued fraction expansions for the Lambert W function</a>, Aequat. Math. 93, 485-498 (2019)
%e A383130 LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))).
%t A383130 ClearAll[cf, x];
%t A383130 cf[ O[x]] = {};
%t A383130 cf[ a0_ + O[x]] := {a0};
%t A383130 cf[ ps_] := Module[ {a0, a1, u, v},
%t A383130   a0 = SeriesCoefficient[ ps, {x, 0, 0}];
%t A383130   a1 = SeriesCoefficient[ ps, {x, 0, 1}];
%t A383130   u = Numerator[a1]; v = Denominator[a1];
%t A383130   Join[ If[ a0==0, {}, {a0}],
%t A383130      Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]];
%t A383130 (* Lambert W function W_0(x) up to O(x)^(M+1) *)
%t A383130 M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M;
%t A383130 cf[W0] //InputForm
%t A383130 (* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17},
%t A383130  {1927, 190}, {13582711, 94423}, {92612482895, 1597966},
%t A383130  {10402118970990527, 8773814169}} *)
%t A383130 (* Note: Change M to the number of terms to be generated *)
%Y A383130 Cf. A213236 (e.g.f. of LambertW).
%K A383130 nonn
%O A383130 1,4
%A A383130 _Jacob DeMoss_, Jun 17 2025
%E A383130 More terms from _Alois P. Heinz_, Jun 17 2025