This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383130 #25 Jun 25 2025 00:36:58 %S A383130 1,1,1,5,17,133,1927,13582711,92612482895,10402118970990527, %T A383130 59203666396198716260449,83631044830029201279016528831, %U A383130 1149522186344339904123210420373026673,458029700061597358458976211208014885543904637441,203695852839150317577316770934832249000714992664672874100151 %N A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm. %C A383130 The continued fraction only produces values for the principal branch of the product logarithm. %H A383130 Cristina B. Corcino, Roberto B. Corcino, and István Mező, <a href="https://doi.org/10.1007/s00010-018-0559-2">Continued fraction expansions for the Lambert W function</a>, Aequat. Math. 93, 485-498 (2019) %e A383130 LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))). %t A383130 ClearAll[cf, x]; %t A383130 cf[ O[x]] = {}; %t A383130 cf[ a0_ + O[x]] := {a0}; %t A383130 cf[ ps_] := Module[ {a0, a1, u, v}, %t A383130 a0 = SeriesCoefficient[ ps, {x, 0, 0}]; %t A383130 a1 = SeriesCoefficient[ ps, {x, 0, 1}]; %t A383130 u = Numerator[a1]; v = Denominator[a1]; %t A383130 Join[ If[ a0==0, {}, {a0}], %t A383130 Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]]; %t A383130 (* Lambert W function W_0(x) up to O(x)^(M+1) *) %t A383130 M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M; %t A383130 cf[W0] //InputForm %t A383130 (* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17}, %t A383130 {1927, 190}, {13582711, 94423}, {92612482895, 1597966}, %t A383130 {10402118970990527, 8773814169}} *) %t A383130 (* Note: Change M to the number of terms to be generated *) %Y A383130 Cf. A213236 (e.g.f. of LambertW). %K A383130 nonn %O A383130 1,4 %A A383130 _Jacob DeMoss_, Jun 17 2025 %E A383130 More terms from _Alois P. Heinz_, Jun 17 2025