This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383140 #36 Apr 18 2025 08:44:25 %S A383140 1,0,1,0,2,1,0,2,6,1,0,-6,20,12,1,0,-30,10,80,20,1,0,42,-320,270,220, %T A383140 30,1,0,882,-1386,-770,1470,490,42,1,0,954,7308,-15064,2800,5180,952, %U A383140 56,1,0,-39870,101826,-39340,-61992,29820,14364,1680,72,1,0,-203958,-40680,841770,-666820,-86940,139440,34020,2760,90,1 %N A383140 Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m. %H A383140 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FallingFactorial.html">Falling Factorial</a> %F A383140 T(n,k) = Sum_{j=k..n} 3^(n-j) * Stirling2(n,j) * Stirling1(j,k). %F A383140 T(n,k) = [x^k] Sum_{k=0..n} 3^(n-k) * Stirling2(n,k) * FallingFactorial(x,k). %F A383140 E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = log(1 + (exp(3*x) - 1)/3). %e A383140 f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k). %e A383140 f_0(m) = 1. %e A383140 f_1(m) = m. %e A383140 f_2(m) = 2*m + m^2. %e A383140 f_3(m) = 2*m + 6*m^2 + m^3. %e A383140 Triangle begins: %e A383140 1; %e A383140 0, 1; %e A383140 0, 2, 1; %e A383140 0, 2, 6, 1; %e A383140 0, -6, 20, 12, 1; %e A383140 0, -30, 10, 80, 20, 1; %e A383140 0, 42, -320, 270, 220, 30, 1; %e A383140 ... %o A383140 (PARI) T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1)); %o A383140 (Sage) %o A383140 def a_row(n): %o A383140 s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n)) %o A383140 return expand(s).list() %o A383140 for n in (0..10): print(a_row(n)) %Y A383140 Columns k=0..1 give A000007, A179929(n-1). %Y A383140 Row sums give A133494. %Y A383140 Alternating row sums give A212846. %Y A383140 Cf. A027471, A383136, A383137, A383138, A383139. %Y A383140 Cf. A129062, A209849. %K A383140 sign,tabl %O A383140 0,5 %A A383140 _Seiichi Manyama_, Apr 17 2025